全問題一覧

カテゴリ
以上
以下

柏陽祭F

re.ghuS 自動ジャッジ 難易度:
8月前

22

10進数における$10!$を$n$進数に変換したときの末尾につく0の数を $f(n)$ とする.このとき,$\sum\limits_{n=2}^\infty f(n)$を求めよ.

柏陽祭C

re.ghuS 自動ジャッジ 難易度:
8月前

35

$p, q$を素数とする.自然数$N=p^6-q^6$と表され、相違なる素因数をただ3つもつとき,$N$の値を求めよ.

柏陽祭D

re.ghuS 自動ジャッジ 難易度:
8月前

18

$a$を$b$で割った余りを$f(a, b)$とする.
このとき,$\sum\limits _{n=1} ^{10000} f(n!+1, n+1)$の値を求めよ.

柏陽祭B

re.ghuS 自動ジャッジ 難易度:
8月前

21

1辺4の正三角形の内部に点$P$をとる.
点$P$の各辺からの距離をそれぞれ$a, b, c$と置いたとき, $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{11\sqrt{3}}{6}, \frac{1}{a}\times\frac{1}{b}\times\frac{1}{c}=\frac{\sqrt{3}}{2}$が成り立ったから$a^2+b^2+c^2$ の値を求めよ.ただし,答えは互いに素な自然数$a, b$を用いて$\frac{a}{b}$と表されるので,$a+b$の値を答えよ.

没問

poino 自動ジャッジ 難易度:
8月前

2

問題文

$n$ 以下の正整数のうち $n$ と互いに素なものの個数を表す $φ(n)$ を $a$ 回合成した関数を $φ^a(n)$ と書くとき、$φ^a(n)=1$ を満たす最小の $a$ が $8$ であるような $n$ の最小値と最大値のを解答してください。

解答形式

半角数字で入力してください。

平方数

katsuo_temple 自動ジャッジ 難易度:
8月前

23

問題文

$n^2-n+1$が平方数となるような非負整数$n$を全て求めよ。

解答形式

$n$を小さい順に改行して半角で解答して下さい。
例)$n=3,7,9$の場合
3
7
9
と解答して下さい。

Q2.円に関する証明

34tar0 採点者ジャッジ 難易度:
8月前

0

問題文

$6$ 点 $A,B,C,D,E,F$ がこの順に同一円周上にあり、$AB=BC,CD=DE,EF=FA$ を満たす。このとき、$3$ 直線 $AD,BE,CF$ は一点で交わることを証明せよ。

解答形式

証明文を書く!


問題文

一辺の長さが1である正方形を $n$ 個、頂点が合うように辺同士でつなげてできる図形を $n$-オミノ とする。ただし、$n=1$ の場合は1つの正方形である。また、$n$-オミノが多角形をなすとき($n$-オミノで囲まれた領域が存在しないとき)、これを $n$-オミノ多角形 とする。

$\rm{S_n}$が$n$-オミノ多角形であるとき、$\rm{S_n}$の辺の数が2024となるような $n$ の最小値を求めよ。

解答形式

答えは整数となるので、半角で入力してください。

Q1.アナグラム

34tar0 採点者ジャッジ 難易度:
8月前

1

問題文

ある数A,B,C,Dがあり、A+B=C+Dが成り立ちます。また、A,B,C,Dを英単語で表したものをそれぞれa,b,c,dとします。このとき、a,bに使われているアルファベットと、c,dに使われているアルファベットは同じでした(個数まで同じ)。このとき、A,B,C,Dを答えてください。ただし、AはC,AはB,CはDより大きいとします。

解答形式

A,B,C,Dを行ごとに答えてください。
例)
1
2
3
4

簡単めな幾何問題

kiwiazarashi 自動ジャッジ 難易度:
8月前

5

問題文

緑色の正方形ABCDと、紫色の正方形EFGHがあり、それぞれ1辺6cmである。点Aと点E、点Bと点F、点Cと点G、点Dと点Hがそれぞれ重なるように正方形を重ねる。(緑色の正方形が上にある。) そして辺ABを3等分する点をとり、点Aに近い方を点Iとする。また辺EFを3等分する点をとり、点Fに近い方を点Jとする。
今、緑色の正方形のみを重心を中心として回転させ、点Iと点Jが重なったところで回転を止めた。このとき、上から見える紫色の部分の面積の合計はいくらか。

解答形式

答えは◯cm^2となるので、◯の部分のみを答えてください。

余談

2年前(小6)のときにルービックキューブを触りながら作った問題です。問題文が長ったらしくて読みにくいと思いますがご了承ください。ちなみにこの問題は当時scratchにも投稿しました。

OMCB020(E)の改題案だったヤツ

Shota_1110 自動ジャッジ 難易度:
8月前

25

問題文

正整数 $x, y$ が
$$x^{11}y^{10} = 2^{(2^{1110})} \cdot 3^{(3^{1110})} \cdot 5^{(5^{1110})} \cdot 37^{(37^{1110})} \cdot 1110$$
をみたすとき,$x$ のとり得る最小の値を求めて下さい.

解答形式

半角英数にし、答えとなる正整数値を入力し解答して下さい.

余談

OMCB020-E(URL : https://onlinemathcontest.com/contests/omcb020/tasks/9732)
のアレンジ,というよりかはこのコンテストのTester期間中に運営さんに改題を提案したときの問題です.
4bにそぐわないとしてOMCへの使用には至りませんでしたが,せっかくなのでよければ解いてみてください.

面積の最大値

skimer 採点者ジャッジ 難易度:
8月前

5

問題文

半径1の円上に3点A,B,Cを取る
三角形ABCの面積の最大値を答えよ

解答形式

答えのみ