実数 $a,b,c$ が $a^2+b^2+c^2\leqq 1$ を満たして動くとき、
座標空間上の点 $(a+b+c, ab+bc+ca, abc)$ が動く領域を $D$ とする。
以下の問いに答えよ。
⑴ $yz$ 平面に平行な平面 $\pi_t\colon \ x=t$ と $D$ が共有点を持つような実数 $t$ の範囲を求めよ。
⑵ $t$ が⑴で求めた範囲にあるとき、平面 $\pi_t$ と $D$ の共通部分を $E_t$ とする。
このとき、 ある $t$ の関数 $m(t), M(t)$ および $t$ と $y$ の関数 $p(t,y),q(t,y)$ が存在して、
$$
\begin{eqnarray}
E^1_t &=& \{ (x,y,z)|\ x=t,\ m(t) \leqq y \leqq M(t) \}\\
E^2_t &=& \{ (x,y,z)|\ x=t,\ z^2+p(t,y)z+q(t,y)\leqq0 \}
\end{eqnarray}
$$
とおけば $E_t = E^1_t \cap E^2_t $ と表せる。このような $m(t), M(t), p(t,y),q(t,y)$ を求めよ。
⑶ $E_t$ の面積を $S(t)$ とおく。$t$ が⑴で求めた範囲にあるとき、$S(t)$ を $t$ の式で表せ。 ただし、 $E_t$ がただ一点からなるときは $S(t)=0$ であるとする。
⑷ $D$ の体積 $V$ を求めよ。
⑷のみ解答せよ。解は $V = \frac{\sqrt{(ア)}}{(イウ)}\pi$ と書ける。(ア)、(イウ)に当てはまる自然数をそれぞれ1,2行目に半角で入力せよ。ここでア,イ,ウの各文字には0から9までの整数のいずれかが入る。たとえば(ア)=3(イウ)=57 と解答する場合は、1行目に「3」、2行目に「57」と入力せよ。なお、根号の中身が最小になるように解答すること。
すべての複素数に対して定義され、複素数の値をとる関数 $f(z)$ は、すべての複素数 $z,w$ について
$$
f(z+w)=f(z)f(w)+zw ...(*)
$$
をみたすとする。以下の問いに答えよ。
⑴ すべての複素数 $z$ について $f(2)f(z)+z = f(1)f(z+1)+1$ が成り立つことを示せ。
⑵ $(*)$ をみたすような $f(z)$ をすべて求めよ。
⑵を解答したうえで、以下の空欄ア~エに当てはまる0~9の整数を順に並べて4桁の半角数字「アイウエ」を入力せよ。根号の中身が最小になるように解答せよ。
$|f(5+11i)|$ のとりうる値のうち最大のものは$(アイ)$, 最小のものは$(ウ)\sqrt{(エ)}$ である。
全長 $L$ mのリムジンが、下図のように直角に曲がったトンネルを、幅 $a(>0)$ mの道から幅 $b(>0)$ mの道へ曲がろうとしている。
このとき、リムジンがトンネルを曲がることのできる最大の全長 $L_{max}$ (m)を求めよ。なお、車の全幅は考えなくて良いものとする。
$a=5,b=6$のときの$L_{max}$の値を関数電卓を用いて計算せよ。答えは、小数第4位の数字を四捨五入したものを解答せよ。
関数 $f(x)$ を $f(x)=4x(1-x)$ で定義し、数列 $ \{ x_n \} $ $(n=1,2\dots)$ を、
$$
x_1=\sin^2{1}=0.708073418...,\ \ x_{n+1} = f(x_n) \ \ (n=1,2,...)
$$
で定める。このとき、 極限値 $\displaystyle \lim_{n \to \infty} \frac{1}{n}\sum_{k=1}^n \log|f'(x_k)|$ を求めよ。
注: 角度の単位はラジアンを用いる。 $\log$ は自然対数を表すものとする。また、$\pi$ が無理数であることは認めてよい。
求めた極限値を小数で表し、絶対値の小数第4位を四捨五入したものに、必要ならば負号をつけて答えよ。すべて半角で入力すること。
例1: $2\pi = 6.2831...$と解答する場合には、「6.283」と入力せよ。
例2: $-\pi = -3.1415...$と解答する場合には、「-3.142」と入力せよ。
また、必要なら以下の自然対数の値を用いよ。
$\log2 = 0.6931..., \log3=1.0986... ,\log7 =1.9459...$
次の命題の真偽を答えなさい。
$0\leq a, b < 10$ を満たす実数 $a,b$ を $10$進小数 で表したものをそれぞれ $a_0.a_1a_2a_3\cdots, \;b_0.b_1b_2b_3\cdots$ とするとき,ある $k=0,1,\cdots$ に対して $a_k\neq b_k$ ならば $a\neq b$ である。
$\vec{a}_1, \vec{a}_2$ を平行(*)でない平面ベクトルとする。実数 $k_1, k_2, k_1', k_2'$ に対して
\begin{equation}
k_1\vec{a}_1+k_2\vec{a}_2=k_1'\vec{a}_1+k_2'\vec{a}_2
\end{equation}が成り立つならば $k_1=k_1'$ かつ $k_2=k_2'$ である。
実数全体を定義域とする微分可能な実数値関数 $f(x)$ が
\begin{equation}
f'(x)=x
\end{equation}を満たすとする。このとき,$f(x)$ はある実数 $a$ を用いて
\begin{equation}
f(x)=\int_a^x t dt
\end{equation}と表せる。
数列 $\{a_n\}, \{b_n\}$ は $n\to\infty$ である実数に収束するとする 。任意の $n$ に対して $b_n\neq 0$ ならば,数列 $\displaystyle{\left\{\frac{a_n}{b_n}\right\}}$ も収束する。
$k=1,2,3, 4$ に対して,命題 $k$ が真なら T
を,偽なら F
を第 $k$ 行に出力してください。
$f_m(x)$という関数列を$f_1(x)=\log{x},f_{m+1}=\log{f_m(x)}$と定義します。ただし$\log{x}$は自然対数です。
具体的には$f_1(x)=\log{x},f_2(x)=\log{\log{x}},f_3(x)=\log{\log{\log{x}}},\ldots$となります。
このとき、
$$\lim_{n\to\infty}\{f_m(3^n)-f_m(2^n)\}=0$$
となるような最小の自然数$m$を求めてください。
半角数字で入力してください。
$65537=2^{16}+1$ が素数かどうか、計算機を使わずに判定したい。以下では $p$ を3以上の素数として、⑴から⑸の問いに答えよ。
⑴ $2^p$ を $p$ で割ったあまりは $p$ によらないことを示し、その値を求めよ。
⑵ $65537$ が $p$ で割り切れるとき、$2^n$ を $p$ で割ったあまりが $1$ になるような最小の自然数 $n$ を求めよ。
⑶ $65537$ が $p$ で割り切れるとき、$p$ を $32$ で割ったあまりとしてあり得る値をすべて求めよ。
⑷ $ p < \sqrt{65537}$ をみたす $p$ であって、$p$ を $32$ で割ったあまりが⑶で求めた数になるようなものをすべて求めよ。
⑸ 以上の結果から、$65537$ が素数かどうか判定せよ。
以下の指示に従って、すべて半角数字で入力せよ。
⑴から⑷までの答えはいずれも非負整数である。
⑴の答えを1行目に入力せよ。
⑵の答えを2行目に入力せよ。
⑶の答えは1つずつ改行して3,4,......i 行目に小さい順に入力せよ。
⑷の答えも1つずつ改行してi+1,i+2, ......j行目に小さい順に入力せよ。
最後に⑸の答えとして、$65537$ が素数であれば1を、そうでなければ0を入力せよ。
20/06/19: 解答の一部にミスがあったため修正しました。
ある二つの自然数a,bは積が和より1000大きくどちらかが立方数だった
この時a,bの組を全て求めよ
a<bとした時のaを小さい順に半角数字で解答せよ
例 (4,7)(8,91)の時は48
AさんBさんの二人の人がいる
この時サイコロをAさんが投げる
1.2.3が出たら次回は次の人がサイコロを投げる
4.5が出たら次回も同じ人が投げる
6が出たら勝利である
N回目でAが勝利する確率を求めよ
Nについての式を求めよ
2つのパラメーター(0,0)
がある
一回の操作でどちらかの数字を1増やすか減らすかする
それぞれ1/4の確率で起こる
この時操作をした回数が2n(nは自然数)の時パラメーターが(0,0)になる確率はnが大きければ大きいほど低くなることを証明せよ
証明形式
$a=e^{2AX},c=e^{2CX}$(Xは正の定数,A,Cは実数)とする.
$f(x)=-a\log_e(x+c)+X$とする.$y=f(x)$の$y$切片を点P,
$y=f(x)$と点$(0,X)$で接する接線$l$と$y$軸とが成す角を
$\theta\;(\theta\mbox{は}0<\theta<\dfrac{\pi}{2}\mbox{を満たす実数})$,$y=f(x)$の$x$切片を点Qとする.
$\tan\dfrac{\theta}{2}$をネイピア数$e$を用いて表せ.
また,点Qの$x$座標が正の無限大に大きくなるとき,$\tan\dfrac{\theta}{2}$の値の極限値を求めよ.
記述式解答を求む.(直感で答えが出る可能性があるので)