数学の問題一覧

カテゴリ
以上
以下

halphy

公開日時: 2020年8月30日18:00 / ジャンル: 数学 / カテゴリ: 大学数学 / 難易度: / ジャッジ形式: 自動ジャッジ

KOH-MC

問題文

$P$ を $n\times n$ 行列とする。$P$ の第 $(i, j)$ 成分と第 $(n-i+1, n-j+1)$ 成分がつねに一致するとき,$P$ を点対称行列と呼ぶことにする。例えば $n=4$ なら,$P$ は一般に

$$
P=\begin{pmatrix} a & b & h & g \\ c & d & f & e \\ e & f & d & c \\ g& h & b & a \end{pmatrix}
$$

という形をしている。$E'$ を $4\times 4$ の単位行列とし,$4\times 4$ 行列 $J'$ を

$$
J'=\begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}
$$

で定義する。

(1) 一般の $4\times 4$ 行列 $X$ に対して,$XJ'$ の $(\fbox{ア},\fbox{イ})$ 成分と $X$ の $(1,2)$ 成分は一致する。また,$J'X$ の $(\fbox{ウ},\fbox{エ})$ 成分と $X$ の $(1,2)$ 成分は一致する。よって, $4\times 4$ 行列 $P$ が点対称行列であることは,$J'PJ'=P$ が成り立つことと同値である。

(2) $E$ を $2\times 2$ の単位行列とし,$2\times 2$ 行列 $J$ を

$$
J=\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}
$$

で定義する。$4\times 4$ 点対称行列 $P$ が,ある $2\times 2$ 行列 $A,B,C,D$ を用いて

$$
P=\begin{pmatrix} A & B \\ C & D \end{pmatrix}
$$

と表せたとする。(1) と同様の考察より,$D=JAJ, B=JCJ$ である。$4\times 4$ 行列 $Q$ を

$$
Q=\frac{1}{\sqrt{2}}\begin{pmatrix} E & -J \\ J & E \end{pmatrix}
$$

で定めると,$Q^{\rm T}Q=\fbox{オ}$ であり

$$
Q^{\rm T}PQ=\begin{pmatrix} \fbox{カ}+\fbox{キク} & \fbox{ケ} \\ \fbox{コ} & \fbox{サシス}-\fbox{セソ} \end{pmatrix}
$$

が成り立つ。

(3) $p$ を実定数とする。(2) の結果を利用して,行列

$$
P=\begin{pmatrix} 0 & p & 0 & 1-p \\ 0 & p^2 & 1-p & p(1-p) \\ p(1-p) & 1-p & p^2 & 0 \\ 1-p & 0 & p & 0 \end{pmatrix}
$$

の固有値を求めよう。$p=\cfrac{13}{15}$ のとき,$P$ の固有値は大きい順に

$$
\fbox{タ}, \frac{\fbox{チ}}{\fbox{ツ}}, \frac{\fbox{テ}}{\fbox{トナ}}, \frac{\fbox{ニ}}{\fbox{ヌネノ}}
$$

である。

解答形式

空欄 $\fbox{ア}$ 〜 $\fbox{ノ}$ には,半角数字 0 - 9 ,記号 - ,4×4行列 E', J' ,2×2行列 E, J, A, C, O のいずれかが当てはまります(B, Dを使って解答することはできません。O は零行列を表します)。$\fbox{ア}$ 〜 $\fbox{ノ}$ に当てはまるものを改行区切りで入力してください。分数はこれ以上約分できない形で解答してください。

halphy

公開日時: 2020年8月15日18:00 / ジャンル: 数学 / カテゴリ: 大学数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

漸化式
$$
a_{n+3}=3a_{n+2}-4a_{n+1}+2a_n\quad (n=1,2,\cdots)
$$および
$$
a_1=1, \; a_2=0, \; a_3=0
$$を満たす数列 $\{a_n\}$ を考える。次の空欄 $\fbox{ア}$ 〜 $\fbox{フ}$ に当てはまる数字を答えなさい。

  • 漸化式
    $$
    a_{n+3}=3a_{n+2}-4a_{n+1}+2a_n\quad (n=1,2,\cdots)
    $$を満たす数列全体の集合を $V$ とする。数列 $a_n, b_n\in V$ および $c\in\mathbb{C}$ に対して,第 $n$ 項が $ca_n, a_n+b_n$ であるような数列をそれぞれ数列 $a_n$ の $c$ 倍,数列 $a_n, b_n$ の和と定義することにすると,この和とスカラー倍により $V$ は $\mathbb{C}$ 上のベクトル空間になる(確かめよ)。ここで,$V$ の元 $a_n$ は,$a_1, a_2, a_3$ を定めることで完全に決定できる。すなわち,写像 $\varphi: V \to \mathbb{C}^3$ を
    $$
    \varphi(a_n)=\begin{pmatrix} a_1 \\ a_2 \\ a_3\end{pmatrix}
    $$で定めると,$\varphi$ は全単射である。しかも,$\varphi$ は線型写像だから,$\varphi$ はベクトル空間の同型になる。$V$ は $\fbox{ア}$ 次元である。また,$e_n^{(1)}, e_n^{(2)}, e_n^{(3)}\in V$ を
    $$
    \varphi(e_n^{(1)})=\begin{pmatrix} 1 \\ 0 \\ 0\end{pmatrix},\; \varphi(e_n^{(2)})=\begin{pmatrix} 0 \\ 1 \\ 0\end{pmatrix},\; \varphi(e_n^{(3)})=\begin{pmatrix} 0 \\ 0 \\ 1\end{pmatrix}
    $$となるように定めると,$e_n^{(1)}, e_n^{(2)}, e_n^{(3)}$ は $V$ の基底になる。

  • $V$ 上の線型変換 $L: V\to V$ を次のように定義する。$a_n\in V$ に対して,$L(a_n)$ を第 $1, 2, 3$ 項がそれぞれ $a_2, a_3, a_4$ である数列とする($L$ が線型写像になることを確かめよ)。このとき,$L(a_n)$ の第 $n$ 項は $a_{n+\fbox{イ}}$ である。基底 $e_n^{(1)}, e_n^{(2)}, e_n^{(3)}$ のもとでの $L$ の表現行列 $L_A$ は
    $$
    L_A=\begin{pmatrix} \fbox{ウ} & \fbox{エ} & * \\ \fbox{オ} & \fbox{カ} & \fbox{キ} \\ \fbox{ク} & \fbox{ケコ} & \fbox{サ}\end{pmatrix}
    $$である。

  • $L_A$ の固有値を $\lambda^{(1)}, \lambda^{(2)}, \lambda^{(3)}$ とする($\lambda^{(1)}\in\mathbb{R}, {\rm Im}(\lambda^{(2)})>0, {\rm Im}(\lambda^{(3)})<0$)。このとき
    \begin{align}
    \lambda^{(1)}&=\fbox{シ}\\
    {\rm Re}(\lambda^{(2)})={\rm Re}(\lambda^{(3)})&=\fbox{ス}\\
    {\rm Im}(\lambda^{(2)})=-{\rm Im}(\lambda^{(3)})&=\fbox{セ}
    \end{align}である。

  • 固有値 $\lambda^{(1)}, \lambda^{(2)}, \lambda^{(3)}$ に対応する固有ベクトルをそれぞれ $\alpha^{(1)}, \alpha^{(2)}, \alpha^{(3)}$ とする。固有ベクトルには定数倍の不定性があるが,$\alpha^{(j)}\;(j=1,2,3)$ の第 $1$ 成分が固有値 $\lambda^{(j)}$ に一致するようにとると
    \begin{align}
    \alpha^{(1)}=\begin{pmatrix} \lambda^{(1)} \\ \fbox{ソ} \\ * \end{pmatrix},\; \alpha^{(2)}=\begin{pmatrix} \lambda^{(2)} \\ \fbox{タ}\;i \\ * \end{pmatrix},\; \alpha^{(3)}=\begin{pmatrix} \lambda^{(3)} \\ * \\ \fbox{チツ}-\fbox{テ}\;i \end{pmatrix}
    \end{align}である。

  • $\varphi(\beta_n^{(1)})=\alpha^{(1)}, \;\varphi(\beta_n^{(2)})=\alpha^{(2)}, \;\varphi(\beta_n^{(3)})=\alpha^{(3)}$ となる数列 $\beta_n^{(1)}, \beta_n^{(2)}, \beta_n^{(3)}\in V$ をとる。$\beta_n^{(1)}, \beta_n^{(2)}, \beta_n^{(3)}\in V$ は $V$ の基底をなすから,$V$ の任意の元 $a_n$ はこれらの線型結合で表すことができる。例えば,$a_n\in V$ が
    $$
    a_1=1, \; a_2=0, \; a_3=0
    $$を満たすとき
    $$
    a_n=\fbox{ト}\;\beta_n^{(1)}-\frac{\beta_n^{(2)}-\beta_n^{(3)}}{\fbox{ナ}\; i}
    $$が成り立つ。これを変形すると
    $$
    a_n=\fbox{ニ}-\left(\sqrt{\fbox{ヌ}}\;\right)^n\sin\left(\frac{n\pi}{\fbox{ネ}}\right)
    $$となる。また,$a_1,\cdots, a_{100}$ のうち $a_n$ が最大となるのは $n=\fbox{ノハ}, \fbox{ヒフ}$ のときである。ただし $\fbox{ノハ} < \fbox{ヒフ}$ とする。

※この問題では,数列とは写像 $a: \mathbb{N} \to \mathbb{C}$ のことをいう。$n\in\mathbb{N}$ に対して,$a(n)$ のことを単に $a_n$ と表記する。また,記号の濫用であるが $a$ を $\{a_n\}, a_n$とも書く。

解答形式

空欄 $\fbox{ア}$ 〜 $\fbox{フ}$ には,半角数字 0 - 9 または記号 - のいずれかが当てはまります。$\fbox{ア}$ 〜 $\fbox{フ}$ に当てはまるものを改行区切りで入力してください。

halphy

公開日時: 2020年7月8日17:37 / ジャンル: 数学 / カテゴリ: 大学数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

$\mathbb{R}^3$上の単位球面
$$
S^2=\{(x,y,z)\in \mathbb{R}^3\mid x^2+y^2+z^2=1\}
$$に対して,その開部分集合 $U=S^2\setminus \{(x,y,z)\in S^2 \mid x\geq 0, y=0\}$ を考える。また,$\mathbb{R}^2$ の部分集合を
$$
V=\{(\theta, \varphi)\in\mathbb{R}^2\mid -\pi/2 < \theta < \pi/2, \;0<\varphi <2\pi\}
$$とおく。

写像 $f:V\to U, g: V\to \mathbb{R}^2$ を次のように定める。
\begin{align}
f(\theta, \varphi)&=(\cos\theta\cos\varphi, \cos\theta\sin\varphi, \sin\theta)\\
g(\theta, \varphi)&=(\varphi \cos\alpha, \sin\alpha)
\end{align}ただし,$\alpha$ は,関係式
$$
\sin 2\alpha+2\alpha=\pi\sin\theta
$$の唯一の解である。$g$ が単射であることは証明なしに用いてよい。

(1) $(\xi, \eta)=g(\theta, \varphi)$ とし,行列
$$
J(\theta, \varphi)=\begin{pmatrix} \cfrac{\partial\xi(\theta, \varphi)}{\partial \theta} & \cfrac{\partial\eta(\theta, \varphi)}{\partial \theta} \\ \cfrac{\partial\xi(\theta, \varphi)}{\partial \varphi} & \cfrac{\partial\eta(\theta, \varphi)}{\partial \varphi} \end{pmatrix}
$$を考える。このとき
$$
|{\rm det}\,J(\theta, \varphi)|=\fbox{ア}\cos\theta
$$である。

(2) 領域 $g(f^{-1}(U))$ の面積は $\fbox{イ}$ である。

解答形式

空欄 $\fbox{ア}$, $\fbox{イ}$ には正の実数が当てはまる。これを $10$ 進小数に表し,小数第 $4$ 位以降を切り捨てたものを改行区切りで半角数字 0-9 およびピリオド . を用いて入力しなさい。例えば,$1.2345\cdots$ を当てはめるなら 1.234 と解答すること。

okapin

公開日時: 2020年6月18日19:20 / ジャンル: 数学 / カテゴリ: 大学数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

$$\int_{-\frac{1}{2}}^\frac{1}{3} \frac{dx}{x^4-1}
=-\frac{1}{\fboxア}\log\fboxイ-\frac{\pi}{\fboxウ}$$

解答形式

$\fboxア\fboxイ\fboxウ$に入る数字をそれぞれ1,2,3行目に半角で入力してください。($\log$の中身は最も簡単な形にしてください)

shakayami

公開日時: 2020年6月11日0:06 / ジャンル: 数学 / カテゴリ: 大学数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

$\mathbb{F}_7$を位数7の有限体とする。このとき$\mathbb{F}_7$係数の3次多項式であって既約かつモニックであるものはいくつ存在するか?

解答形式

半角数字で入力してください。

halphy

公開日時: 2020年6月8日13:17 / ジャンル: 数学 / カテゴリ: 大学数学 / 難易度: / ジャッジ形式: 自動ジャッジ

組合せ 数列 級数

問題文

からなる $2$ 次元的な植物を考えます。植物は,以下の条件を満たすような枝 $s$ 本と葉 $l$ 枚からなります。


条件

  1. $s, l$ は $0$ 以上の整数である。
  2. 枝の両端の点には,枝または葉が $0$ 個以上つながっている。
  3. すべての枝からたどりつくことができるような,とよばれる点がただひとつ存在する。
  4. 枝がループを作るようにつながっていることはない。

この植物の重さ $n$ は $n=2s+l$ で表されます。例えば,重さ $4$ の異なる植物をすべて描いたものは下図のようになります。

ここで,ある点に着目したときに,その点から出ている葉と枝の並びが異なるものは区別することに注意しましょう。

重さ $n$ の植物が $t_n$ 種類あるとき
\begin{equation}
\sum_{n=0}^{\infty}\frac{t_n}{3^n}
\end{equation}の値を求めなさい。ただし,級数が収束することは証明なしに用いてかまいません。

解答形式

答えは正の有理数 $r$ です。

  • $r$ が整数ならば,$r$ を半角数字で出力してください。
  • $r$ が整数でないならば,互いに素な自然数 $a, b$ を用いて $r=\displaystyle{\frac{a}{b}}$ と表し,$a$ を $1$ 行目に,$b$ を $2$ 行目にそれぞれ半角数字で出力してください。

halphy

公開日時: 2020年6月4日0:54 / ジャンル: 数学 / カテゴリ: 大学数学 / 難易度: / ジャッジ形式: ジャッジなし

線形代数

問題文

${\rm GL}(2,\mathbb{R})$ を $2\times 2$ 正則行列全体の集合とする.単位行列を $E$ とし,${\rm GL}(2,\mathbb{R})$ の部分集合 $S$ を

\begin{equation}
S=\{ A\in {\rm GL}(2,\mathbb{R})\mid \forall X\in {\rm GL}(2,\mathbb{R}), AX=XA\}
\end{equation}

で定めるとき

\begin{equation}
S=\{ rE \mid r\in \mathbb{R}, r\neq 0\}
\end{equation}

であることを証明せよ.