[C]線形代数のよくある問題

fusshi 自動ジャッジ 難易度: 数学 > 大学数学
2020年9月12日18:00 正解数: 0 / 解答数: 3 ギブアップ数: 0
この問題はコンテスト「Okapin Mathematical Contest」の問題です。

全 3 件

回答日時 問題 解答者 結果
2020年9月12日23:01 [C]線形代数のよくある問題 baba
不正解
2020年9月12日19:50 [C]線形代数のよくある問題 nesya
不正解
2020年9月12日19:12 [C]線形代数のよくある問題 ofukufukufuku
不正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

3年前

3

問題文

しずかちゃんがシャワーを浴びようとしてお湯を出し始めた。はじめのお湯の温度は $35$℃で、お湯を出し始めてから $n$ 秒後のお湯の温度は $T_n$℃であるとする。

しずかちゃんは非常に温度に敏感で、シャワーの温度をちょうど $40$℃に設定しないと落ち着かない。そこで、しずかちゃんはお湯を出し始めてから $n=1,2,3...$ 秒後に、シャワーの温度がちょうど $a(40-T_n)$℃だけ上がるように温度調節レバーを操作する。ここで、$a$ は正の定数である。なお、$T_n>40$ のときは $a(T_n-40)$℃だけ温度が「下がる」ように操作するものとする。

$N$ を自然数の定数として、温度調節レバーの操作がお湯の温度に反映されるまでちょうど $N$ 秒かかる。すなわち、しずかちゃんがお湯を出し始めてから $n$ 秒後に温度調節レバーを操作したとき、 はじめから $n+N$ 秒後と $n+N+1$ 秒後の間にシャワーの温度が $a(40-T_n)$℃だけ上昇する。

さて、$\displaystyle \lim_{n \to \infty} T_n=40$ であれば、しずかちゃんは十分な時間が経つと快適にシャワーを浴びることができる。$a$ が十分小さければ、すなわち温度をできるだけ少しづつ上げていけば、直感的にはこのことは可能である。では、具体的には $a$ はどれほど小さい必要があるのだろうか。そこで、$\displaystyle \lim_{n \to \infty} T_n=40$ が成り立たないような $a$ の最小値を $a_c$ とおく。以下の空欄を埋めよ。

(1) $N=1$ のとき、$a_c=\fbox{ア}$ である。

(2) $N=2$ のとき、$\displaystyle a_c=\frac{\fbox{イウ}+\sqrt{\fbox{エ}}}{\fbox{オ}}$ である。

解答形式

ア〜オには、0から9までの数字または「-」(マイナス)が入る。
(1)の答えとして「ア」にあてはまる数を半角で1行目に入力せよ。
(2)の答えとして、文字列「イウエオ」を半角で2行目に入力せよ。

[D] Eigensequence

halphy 自動ジャッジ 難易度:
3年前

6

問題文

漸化式
$$
a_{n+3}=3a_{n+2}-4a_{n+1}+2a_n\quad (n=1,2,\cdots)
$$および
$$
a_1=1, \; a_2=0, \; a_3=0
$$を満たす数列 $\{a_n\}$ を考える。次の空欄 $\fbox{ア}$ 〜 $\fbox{フ}$ に当てはまる数字を答えなさい。

  • 漸化式
    $$
    a_{n+3}=3a_{n+2}-4a_{n+1}+2a_n\quad (n=1,2,\cdots)
    $$を満たす数列全体の集合を $V$ とする。数列 $a_n, b_n\in V$ および $c\in\mathbb{C}$ に対して,第 $n$ 項が $ca_n, a_n+b_n$ であるような数列をそれぞれ数列 $a_n$ の $c$ 倍,数列 $a_n, b_n$ の和と定義することにすると,この和とスカラー倍により $V$ は $\mathbb{C}$ 上のベクトル空間になる(確かめよ)。ここで,$V$ の元 $a_n$ は,$a_1, a_2, a_3$ を定めることで完全に決定できる。すなわち,写像 $\varphi: V \to \mathbb{C}^3$ を
    $$
    \varphi(a_n)=\begin{pmatrix} a_1 \\ a_2 \\ a_3\end{pmatrix}
    $$で定めると,$\varphi$ は全単射である。しかも,$\varphi$ は線型写像だから,$\varphi$ はベクトル空間の同型になる。$V$ は $\fbox{ア}$ 次元である。また,$e_n^{(1)}, e_n^{(2)}, e_n^{(3)}\in V$ を
    $$
    \varphi(e_n^{(1)})=\begin{pmatrix} 1 \\ 0 \\ 0\end{pmatrix},\; \varphi(e_n^{(2)})=\begin{pmatrix} 0 \\ 1 \\ 0\end{pmatrix},\; \varphi(e_n^{(3)})=\begin{pmatrix} 0 \\ 0 \\ 1\end{pmatrix}
    $$となるように定めると,$e_n^{(1)}, e_n^{(2)}, e_n^{(3)}$ は $V$ の基底になる。

  • $V$ 上の線型変換 $L: V\to V$ を次のように定義する。$a_n\in V$ に対して,$L(a_n)$ を第 $1, 2, 3$ 項がそれぞれ $a_2, a_3, a_4$ である数列とする($L$ が線型写像になることを確かめよ)。このとき,$L(a_n)$ の第 $n$ 項は $a_{n+\fbox{イ}}$ である。基底 $e_n^{(1)}, e_n^{(2)}, e_n^{(3)}$ のもとでの $L$ の表現行列 $L_A$ は
    $$
    L_A=\begin{pmatrix} \fbox{ウ} & \fbox{エ} & * \\ \fbox{オ} & \fbox{カ} & \fbox{キ} \\ \fbox{ク} & \fbox{ケコ} & \fbox{サ}\end{pmatrix}
    $$である。

  • $L_A$ の固有値を $\lambda^{(1)}, \lambda^{(2)}, \lambda^{(3)}$ とする($\lambda^{(1)}\in\mathbb{R}, {\rm Im}(\lambda^{(2)})>0, {\rm Im}(\lambda^{(3)})<0$)。このとき
    \begin{align}
    \lambda^{(1)}&=\fbox{シ}\\
    {\rm Re}(\lambda^{(2)})={\rm Re}(\lambda^{(3)})&=\fbox{ス}\\
    {\rm Im}(\lambda^{(2)})=-{\rm Im}(\lambda^{(3)})&=\fbox{セ}
    \end{align}である。

  • 固有値 $\lambda^{(1)}, \lambda^{(2)}, \lambda^{(3)}$ に対応する固有ベクトルをそれぞれ $\alpha^{(1)}, \alpha^{(2)}, \alpha^{(3)}$ とする。固有ベクトルには定数倍の不定性があるが,$\alpha^{(j)}\;(j=1,2,3)$ の第 $1$ 成分が固有値 $\lambda^{(j)}$ に一致するようにとると
    \begin{align}
    \alpha^{(1)}=\begin{pmatrix} \lambda^{(1)} \\ \fbox{ソ} \\ * \end{pmatrix},\; \alpha^{(2)}=\begin{pmatrix} \lambda^{(2)} \\ \fbox{タ}\;i \\ * \end{pmatrix},\; \alpha^{(3)}=\begin{pmatrix} \lambda^{(3)} \\ * \\ \fbox{チツ}-\fbox{テ}\;i \end{pmatrix}
    \end{align}である。

  • $\varphi(\beta_n^{(1)})=\alpha^{(1)}, \;\varphi(\beta_n^{(2)})=\alpha^{(2)}, \;\varphi(\beta_n^{(3)})=\alpha^{(3)}$ となる数列 $\beta_n^{(1)}, \beta_n^{(2)}, \beta_n^{(3)}\in V$ をとる。$\beta_n^{(1)}, \beta_n^{(2)}, \beta_n^{(3)}\in V$ は $V$ の基底をなすから,$V$ の任意の元 $a_n$ はこれらの線型結合で表すことができる。例えば,$a_n\in V$ が
    $$
    a_1=1, \; a_2=0, \; a_3=0
    $$を満たすとき
    $$
    a_n=\fbox{ト}\;\beta_n^{(1)}-\frac{\beta_n^{(2)}-\beta_n^{(3)}}{\fbox{ナ}\; i}
    $$が成り立つ。これを変形すると
    $$
    a_n=\fbox{ニ}-\left(\sqrt{\fbox{ヌ}}\;\right)^n\sin\left(\frac{n\pi}{\fbox{ネ}}\right)
    $$となる。また,$a_1,\cdots, a_{100}$ のうち $a_n$ が最大となるのは $n=\fbox{ノハ}, \fbox{ヒフ}$ のときである。ただし $\fbox{ノハ} < \fbox{ヒフ}$ とする。

※この問題では,数列とは写像 $a: \mathbb{N} \to \mathbb{C}$ のことをいう。$n\in\mathbb{N}$ に対して,$a(n)$ のことを単に $a_n$ と表記する。また,記号の濫用であるが $a$ を $\{a_n\}, a_n$とも書く。

解答形式

空欄 $\fbox{ア}$ 〜 $\fbox{フ}$ には,半角数字 0 - 9 または記号 - のいずれかが当てはまります。$\fbox{ア}$ 〜 $\fbox{フ}$ に当てはまるものを改行区切りで入力してください。

[F] 歪んだバランス

masorata 自動ジャッジ 難易度:
3年前

10

問題文

相異なる正の実数 $a,b,c$ が $ab^2(1-b)=bc^2(1-c)=ca^2(1-a)$ を満たして動くとき、$(1-a)(1-b)(1-c)$ の最大値は

$$
\displaystyle \frac{\fbox{アイウ}+\fbox{エオ}\sqrt{\fbox{カ}}}{\fbox{キクケ}}
$$

である。

解答形式

ア〜ケには、0から9までの数字、または-(マイナス)が入る。文字列「アイウエオカキク」を全て半角で1行目に入力せよ。ただし、それ以上約分できない形で、かつ根号の中身が最小になるように答えよ。

[F] endless sequence

okapin 自動ジャッジ 難易度:
3年前

9

問題文

(1)$p$を奇素数とし、$\frac{1}{p}$を2進数で表示したときの循環節(※)が2以上8以下であるような$p$は6つ存在する。フェルマーの小定理を用いて$p$とその$p$に対する$\frac{1}{p}$の循環節の長さの関係を導き、6つの$p$の値を全て答えよ。

(2)$p$を奇素数とし、$\frac{1}{p}$を2進数で表示したときに最大で1が連続して並ぶ個数を$f(p)$とおく。例えば$\frac{1}{3}=0.01010…_{(2)}$より$f(3)=1$である。(1)を満たす$p$の中で$f(p)$が最大となるのは$p$がいくらのときか。Midyの定理を用いることによって求め、その値を答えよ。


(※)循環節とは、循環小数の繰り返される数字の列のうちその長さが最小でありかつその先頭が最も先に来るようなもののことである。例えば$\frac{1}{3}=0.01010…_{(2)}$となり、このときの循環節は$01$であり、$0101$や$10$は循環節とならない。


解答形式

(1)の全ての答えを小さい順に1~6行目に半角数字で入力してください。また、(2)の答えを7行目に半角数字で入力してください。

[E] minimum value (hard)

okapin 自動ジャッジ 難易度:
3年前

5

問題文

$a,b$を$a>1,b>1$を満たす実数とする。
$\theta$が$0\leq\theta<2\pi$の範囲を動くとき$f(\theta)=\sqrt{a^2-2a\cos\theta+1}+\sqrt{b^2-2b\sin\theta+1}$の最小値が$\sqrt{a^2+b^2}$となるような$(a,b)$の存在範囲を$ab$平面に図示したとき、その領域の面積を求めよ。

解答形式

整数または既約分数で答えてください。
半角で入力してください。

[F] Slow and Steady

halphy 自動ジャッジ 難易度:
3年前

3

問題文

$n$ を自然数とする。置換 $\sigma\in \mathfrak{S}_n$ に対して,$\sigma$ の近道度 $m(\sigma)$ を次のように定義する。

  • $\sigma$ を 互いに素な(共通元をもたない) 巡回置換の積に表したとき,各巡回置換の長さの積の逆数を $m(\sigma)$ とする。(太字部分は19:42追記)

例えば $\sigma=(1 4 2)(5 6 7)(3)\in \mathfrak{S}_7$ なら,$\sigma$ は長さ $3, 3, 1$ の巡回置換からなるから,$\sigma$ の近道度 $m(\sigma)$ は

$$
m(\sigma)=\frac{1}{3\cdot 3\cdot 1}=\frac{1}{9}
$$

である。自然数 $n$ に対して,${1,\cdots, n}$ の置換(これは $n!$ 通りある)の近道度の平均を

$$
f_n=\frac{1}{n!}\sum_{\sigma\in \mathfrak{S}_n} m(\sigma)
$$

とおく。

$$
f_1=1, \; f_2=\frac{\fbox{ア}}{\fbox{イ}}, \; f_4=\frac{\fbox{ウエオ}}{\fbox{カキク}}
$$

であり,

$$
\sum_{n=0}^{\infty} f_n=\fbox{X}
$$

である(級数が収束することは証明なしに認めてよい)。ただし $f_0=1$ と約束する。

※ $\mathfrak{S}_n$ は $n$ 次対称群を表す(19:03追記)。

解答形式

$\fbox{ア}$ 〜 $\fbox{ク}$ には 0 - 9 の数字が当てはまります。$\fbox{ X }$にはある実数が当てはまります。空欄のある分数はすべて既約です。

  • 1行目 には $\fbox{ア}$ に当てはまる数を半角で入力してください。
  • 2行目 には $\fbox{イ}$ に当てはまる数を半角で入力してください。
  • 3行目 には $\fbox{ウエオ}$ に当てはまる数を半角で入力してください。
  • 4行目 には $\fbox{カキク}$ に当てはまる数を半角で入力してください。
  • 5行目 には $\fbox{ X }$ に当てはまる数を入力します。答えを $10$ 進小数で表し,小数第2位を四捨五入して小数第1位まで求めてください。例えば,$9.876\cdots $ が答えになる場合は 9.9 と解答してください。

ヒント

  • $f_0,\cdots, f_{n-1}$ を使って $f_n$ を表すことができます。
  • $f_n$ の母関数を $f(t)=\displaystyle{\sum_{n=0}^{\infty}} f_nt^n$ とおくと,$f(t)$ はとある微分方程式を満たします。

[B] constant variable

Benzenehat 自動ジャッジ 難易度:
3年前

19

問題文

ある大きさの球から、ある直径の円柱をくりぬいた。円柱の軸は球の中心を通る。(ビーズのような形を想像してください)
この立体の体積が$36\pi$のとき、以下のうちいずれかの値が一意に定まる。

  1. 円柱の底面の半径
  2. 球の半径
  3. 円柱の深さ

一意に定まるものの番号と、その値を求めよ。

解答形式

一意に定まるものの番号を半角数字で1行目に、その値を2行目に入れてください。2行目は整数または既約分数で答えてください。

解答例

1
4

Vo Sequence

halphy 自動ジャッジ 難易度:
3年前

8

問題文

「ボ」と「ー」からなる文字列のうち,以下の条件を満たすものをボー文字列と呼ぶことにします.


条件:長音記号「ー」が文字列の先頭にくることはなく,連続して現れない.


例えば,「ボボー」や「ボーボボ」はボー文字列ですが,「ーボー」や「ボボーー」はボー文字列ではありません.

ボー文字列に対して,次の操作を行うことを考えます.


操作:ボー文字列に対して,次のうちいずれか一方を行う.

  • (A)文字列のどこか1ヶ所に長音記号「ー」を付け加える.
  • (B)文字列の末尾に「ボ」を付け加える.

ただし,得られた文字列はボー文字列でなければならない.


1文字「ボ」から始めて,ボー文字列に対してくり返し操作を行い $n$ 文字からなるボー文字列が得られたとします.異なる操作の仕方の総数を $a_n$ とするとき,$a_{10}$ を求めなさい.

解答形式

半角数字で入力してください。

[C] coin tossing

Benzenehat 自動ジャッジ 難易度:
3年前

28

問題文

1円, 5円, 10円, 50円, 100円, 500円の硬貨が1枚ずつある。1回目の試行で6枚の硬貨を投げ、表が出た硬貨をもらうことができる。2回目の試行では、残った硬貨を投げ、やはり表が出た硬貨をもらうことができる。もらえる金額が600円以上になったらこの試行は終了するものとする。

(1) 1回目の試行で終わる確率はいくらか。
(2) 2回目の試行で終わる確率はいくらか。

解答形式

(1)の答えを1行目に、(2)の答えを2行目に既約分数で入れてください。

解答例

1/2
3/10

[B]ネットワークの情報伝達

kaicho 自動ジャッジ 難易度:
3年前

11

問題文

次のようなネットワークを考える.
・情報として「0」または「1」の状態を各ノードは保持することができる.
・各ノードは他のノードに対して一方的に情報を伝達する.
・情報の伝達の際には,ある確率pで正しく状態を伝達するが,1-pの確率で状態が反転して伝達される.ここで,このpは枝によって値が異なることに注意する.
・2つのノードから情報が伝達される場合には,両方の情報を受け取った上で,保持する状態を決定する.このとき,2本のノードから受け取った情報が一致する場合には一致した状態を保持し,異なる情報を受け取った場合には1/2の確率で「0」を保持することにする(1/2の確率で「1」を保持することにする).
以下の図のネットワークにおいて始点の情報を終点まで伝達することを考え,始点と終点の状態が一致する確率xを求める.
ただし,矢印(枝)はノード間の情報伝達の方向を表し,枝の上に書かれている文字は正しく伝達される確率(上の説明のp)を表すものとする.

① a=2/3,b=3/4の場合のxを計算せよ.
② a=11/111,b=1/2の場合のxを計算せよ.
③ a=2/3,b=3/4の場合を考える.このネットワークはxy平面上の$3\times3$のサイズの格子点において,x軸正方向とy軸正方向に正しく情報が伝達される確率をそれぞれa,b,始点を原点,終点を点(2,2)としたものとみなせる.このとき,$n\times n$のサイズに拡張された(終点を(n,n)とする)ネットワークを考えると,$n\to \infty$とした時に,始点と終点の状態が一致する確率の収束値を求めよ.

解答形式

「分子/分母」(半角英数字)として既約分数を表せ.例)11/92
1行目に①,2行目に②,3行目に③を解答すること.

求面積問題10

Kinmokusei 自動ジャッジ 難易度:
3年前

7

問題文

図中の赤い線分の長さが10のとき、青で示した四角形の面積を求めてください。

解答形式

半角数字で解答してください。

平方数

zyogamaya 自動ジャッジ 難易度:
3年前

2

問題文

$x,y$を自然数とする。$x^2+8y$と$y^2+8x$がともに平方数になるような$x,y$の組$(x,y)$をすべて求めよ。

解答形式

例えば、$(x,y)=(1,2),(13,4),(51,16)$と答えたい場合は

12
134
5116

と入力してください。解の組は$x$の値が小さい順に並べてください。$x$の値が同じで$y$の値が異なる場合は$y$の値が小さい方を先に入力してください。