次の命題の真偽を答えなさい。
$0\leq a, b < 10$ を満たす実数 $a,b$ を $10$進小数 で表したものをそれぞれ $a_0.a_1a_2a_3\cdots, \;b_0.b_1b_2b_3\cdots$ とするとき,ある $k=0,1,\cdots$ に対して $a_k\neq b_k$ ならば $a\neq b$ である。
$\vec{a}_1, \vec{a}_2$ を平行(*)でない平面ベクトルとする。実数 $k_1, k_2, k_1', k_2'$ に対して
\begin{equation}
k_1\vec{a}_1+k_2\vec{a}_2=k_1'\vec{a}_1+k_2'\vec{a}_2
\end{equation}が成り立つならば $k_1=k_1'$ かつ $k_2=k_2'$ である。
実数全体を定義域とする微分可能な実数値関数 $f(x)$ が
\begin{equation}
f'(x)=x
\end{equation}を満たすとする。このとき,$f(x)$ はある実数 $a$ を用いて
\begin{equation}
f(x)=\int_a^x t dt
\end{equation}と表せる。
数列 $\{a_n\}, \{b_n\}$ は $n\to\infty$ である実数に収束するとする 。任意の $n$ に対して $b_n\neq 0$ ならば,数列 $\displaystyle{\left\{\frac{a_n}{b_n}\right\}}$ も収束する。
$k=1,2,3, 4$ に対して,命題 $k$ が真なら T
を,偽なら F
を第 $k$ 行に出力してください。
$f_m(x)$という関数列を$f_1(x)=\log{x},f_{m+1}=\log{f_m(x)}$と定義します。ただし$\log{x}$は自然対数です。
具体的には$f_1(x)=\log{x},f_2(x)=\log{\log{x}},f_3(x)=\log{\log{\log{x}}},\ldots$となります。
このとき、
$$\lim_{n\to\infty}\{f_m(3^n)-f_m(2^n)\}=0$$
となるような最小の自然数$m$を求めてください。
半角数字で入力してください。
$65537=2^{16}+1$ が素数かどうか、計算機を使わずに判定したい。以下では $p$ を3以上の素数として、⑴から⑸の問いに答えよ。
⑴ $2^p$ を $p$ で割ったあまりは $p$ によらないことを示し、その値を求めよ。
⑵ $65537$ が $p$ で割り切れるとき、$2^n$ を $p$ で割ったあまりが $1$ になるような最小の自然数 $n$ を求めよ。
⑶ $65537$ が $p$ で割り切れるとき、$p$ を $32$ で割ったあまりとしてあり得る値をすべて求めよ。
⑷ $ p < \sqrt{65537}$ をみたす $p$ であって、$p$ を $32$ で割ったあまりが⑶で求めた数になるようなものをすべて求めよ。
⑸ 以上の結果から、$65537$ が素数かどうか判定せよ。
以下の指示に従って、すべて半角数字で入力せよ。
⑴から⑷までの答えはいずれも非負整数である。
⑴の答えを1行目に入力せよ。
⑵の答えを2行目に入力せよ。
⑶の答えは1つずつ改行して3,4,......i 行目に小さい順に入力せよ。
⑷の答えも1つずつ改行してi+1,i+2, ......j行目に小さい順に入力せよ。
最後に⑸の答えとして、$65537$ が素数であれば1を、そうでなければ0を入力せよ。
20/06/19: 解答の一部にミスがあったため修正しました。
ある二つの自然数a,bは積が和より1000大きくどちらかが立方数だった
この時a,bの組を全て求めよ
a<bとした時のaを小さい順に半角数字で解答せよ
例 (4,7)(8,91)の時は48
AさんBさんの二人の人がいる
この時サイコロをAさんが投げる
1.2.3が出たら次回は次の人がサイコロを投げる
4.5が出たら次回も同じ人が投げる
6が出たら勝利である
N回目でAが勝利する確率を求めよ
Nについての式を求めよ
2つのパラメーター(0,0)
がある
一回の操作でどちらかの数字を1増やすか減らすかする
それぞれ1/4の確率で起こる
この時操作をした回数が2n(nは自然数)の時パラメーターが(0,0)になる確率はnが大きければ大きいほど低くなることを証明せよ
証明形式
同じ色の線分は同じ長さです。
∠Xの大きさを求めてください。
青と黄、赤と黄緑の線分が重なって一部見づらくなっています。m(__)m
度数法で、0~360の数字を半角で入力してください。
例:∠X=30° → 30
「度」や"°"をつけずに回答してください。
$a=e^{2AX},c=e^{2CX}$(Xは正の定数,A,Cは実数)とする.
$f(x)=-a\log_e(x+c)+X$とする.$y=f(x)$の$y$切片を点P,
$y=f(x)$と点$(0,X)$で接する接線$l$と$y$軸とが成す角を
$\theta\;(\theta\mbox{は}0<\theta<\dfrac{\pi}{2}\mbox{を満たす実数})$,$y=f(x)$の$x$切片を点Qとする.
$\tan\dfrac{\theta}{2}$をネイピア数$e$を用いて表せ.
また,点Qの$x$座標が正の無限大に大きくなるとき,$\tan\dfrac{\theta}{2}$の値の極限値を求めよ.
記述式解答を求む.(直感で答えが出る可能性があるので)
相異なる正の整数$a, b,c, d,k$が
$$a^2 + b^2 = c^2 + d^2 = k$$
を満たすものとします。$k$の最小値を求めてください。
半角数字で回答してください。
$n$を2以上の整数とし, $f(x)=\sqrt[n]{x^n+nx^{n-1}} (x\geq0)$を考える。
$(1)$ $x$を正の整数とするとき, $f(x)$の値が整数でないことを示せ。
$(2)$ $y=f(x)$, $x$軸, $x=m-1$ ($m$は正の整数) で囲まれた領域内(境界線上も含む)の格子点の数を求めよ。
$(2)$ で $m=100$ のときの答えを半角数字で入力してください。
自然数の組に対する二項演算 $\small \bigcirc$ および $ \triangle$ は以下の条件を満たすとする。
$$
\newcommand{\o}{\ \small\bigcirc \ \normalsize }
\newcommand{\tr}{\ \triangle \ }
a\tr b=\underbrace{(a\o (a\o (\cdots \o(a\o a))))}_{a\ が\ b\ 個}
$$
二項演算 $\tr$ が可換性
$$
a\tr b=b\tr a
$$
を満たすとき、次の問に答えよ
(1) $1\o 1=2$ を示せ。
(2) 演算$\o$が結合法則
$$
a\o(b\o c)=(a\o b)\o c
$$
を満たすとき $2020\tr 2019$ の値を求めよ。
(2)の値を半角数字で記述せよ。