円に内接する四角形 $ABCD$ があり,$\angle ABC = 90^\circ$ をみたしている.$2$ 点 $A , C$ を通り直線 $AB$ に接するような円と線分 $BD$ の交点を $E$ とすると,$CD = CE$ が成立した.$BE = 7 , ED = 9$ であるとき,線分 $AB$ の長さの2乗を求めよ.
半角数字で解答してください.
$AB=44,AC=46$ をみたす三角形 $ABC$ があり, $AB,AC$ の中点を $M,N$ とする. 三角形 $ANB$ の外接円と三角形 $AMC$ の外接円の $A$ でない交点を $P$ とすると $P$ が線分 $BC$ 上に存在した.
このときの線分 $BC$ の長さを求めよ
$BC^2$ は正の整数値になるので, その値を半角で解答してください

「正方形と正三角形 Part1」に続いており、誘導のようになっているため、Part1を解いていない方は先にPart1を解いておくことをお勧めします♪
誘導なしでもデキルケド、、、
四角形ABCDは正方形である。辺AD上に点P、BCの延長線上に点Qを取ると、三角形PBQは正三角形になる。DCとPQの交点をRとする。AP上にSを取ると三角形SBRも正三角形になる。次の問いに答えなさい。
SRとPBの交点をTとする。SBはSTの何倍であるか答えなさい。
◯倍のような「倍」はつけずに数字や記号のみで答えてください。√、+、-などを使う場合はカタカナで表記してください。2+√2のように、√の数よりも先に2などの整数を答えてください。√同士であれば、中身の数が少ない順に答えなさい。
√→ルート
+→プラス
-→マイナス
(例)3
2ルート3
3マイナスルート2プラスルート3

四角形ABCDは正方形である。辺AD上に点P、BCの延長線上に点Qを取ると、三角形PBQは正三角形になる。DCとPQの交点をRとする。AP上にSを取ると三角形SBRも正三角形になる。次の問いに答えなさい。
角RBCの大きさを求めなさい
角度の大きさは数字のみで回答してください
(例)180
90 など
長方形ABCDがあり、AB=X cm、AD=Ycmとする。(X:Y=1:2)
CB=CEとなるよう、AD上に点Eをとる。
点Pは頂点Bから頂点Cまで動く。
CEとPDの交点をSとする。
このとき、三角形CBE相似三角形EPSになるような場所に点Pがあるとき、次の(ア)〜(ウ)にはいる数字を答えなさい。
BP:PC=(ア):√(イ)+(ウ)
ア、イ、ウの順に、間に点を入れながら答えてください。1行で答えること。
(例)
1、2、3
長方形ABCDがあり、AB=Xcm、AD=Ycmである。 (X <Y) 点Pは頂点Bを出発して頂点Cまで動く。
途中、角APDが直角になった時が2回あった。
ここで、1回目に直角になった時の点Pの位置をQとし、2回目に直角になった時の点Pの位置をRとする。
BQ=2cm、QR=4cmである時、X、Yはそれぞれ何cmだと考えられるか?
下の形式のようにX、Yは大文字、cmは小文字で、2行構成で答えなさい。ただし√が含まれる場合はカタカナで答えなさい。
√2→ルート2
5√17→5ルート17
(例)
Xcm=◯◯cm
Ycm=◯◯cm
内角がすべて90°となる三角形を構成せよ。
文章でまとめなさい。
鋭角三角形 $ABC$ の垂心を $H$ $,$ $A,B,C$ から対辺に下ろした垂線の足をそれぞれ $D,E,F$ とし $,BC$ の中点を $M$ とする$.$ 直線 $AM$ 上に $\angle APH=90 ^。$ となる点 $P$ をとり$,$ 直線 $DE$ と直線 $FP$ の交点を $Q$ とする $.$
また $,$ 三角形 $AHC$ の外接円と三角形 $ABM$ の外接円との交点を$R$ $,$ 三角形$AHC$の外接円と線分 $DE$ の交点を$S$ とする $.$
$$AM:AS=\sqrt{3}:\sqrt{2} AQ=11 QR=7$$
が成り立つとき, $BC$ の長さを求めよ.
$BC^2$ は正の整数値になるので,その値を半角で解答してください.