ある神社ではおみくじを販売していて、おみくじの内容について次のようなことが分かっています。
・くじは2026本あり、それぞれに運勢が1つ書いてある。
・運勢は7種類あり、大吉、中吉、小吉、凶、大凶、吉、平である。
・(大吉の本数):(中吉の本数)=5:7
・(中吉の本数):(小吉の本数)=9:11
・(小吉の本数):(凶の本数)=7:4
・(凶の本数):(大凶の本数)=11:8
・(吉の本数):(平の本数)=5:2
平の本数を求めてください。
答えの数字を半角数字で入力してください。
ここ3年ぐらい吉しか引いてないです。
$2025^{2026}+2026^{2025}$ について以下の問いに答えよ。
$(1)$ $625$ で割った余りを求めよ。
$(2)$ 下 $4$ 桁の数を求めよ。
答え二つを半角カンマ(,)で区切って答えてください。
例)123,456
正の整数 $n$ に対し,関数 $f_n(x)$ を
$$
f_n(x)=x\lfloor \dfrac{n}{x}\rfloor
$$
で定める.ただし,$x>0$ とする.
また,実数 $t$ に対し,$t$ 以下の最大の整数を $\lfloor t\rfloor$ で表す.
⑴ 方程式 $
f_n(x)=n$ が正の実数解を無限個もつことを示せ. また,$f_1(x)=1$ の正の実数解を,値が大きい順に
$$
a_1,a_2,a_3,\ldots
$$
とするとき,
$$
\lim_{m\to\infty}\sum_{k=m}^{2m} a_k
$$
を求めよ.
⑵ 座標平面における $y=f_n(x)$ のグラフのうち,$
\dfrac{1}{2}\le x\le 1
$ を満たす部分の長さの総和を $S_n$ とする.
このとき, $$ \lim_{n\to\infty}\dfrac{S_n}{n}
$$を求めよ.
証明は入力せず、答えのみで良いです。
⑴の答えは1行目、⑵の答えは2行目に いずれも左詰めで入力してください。
入力例)
π 、√π、2e/3、log7 (自然対数)、(3+√2)π、5e√2、log10_2 (常用対数)
関数 $f:\mathbb{Z}^2\rightarrow \mathbb{Z}$ は以下を満たします.
$$
\begin{aligned}
&f(n,m)\\\\
&=f(n-1,m)+2f(n,m-1)\\\\
&+f(n-2,m)-f(n-1,m-1)-f(n,m-2)
\end{aligned}
$$
このとき$f(10000,10000)$ を 素数 $4999$ で割った余りを求めてください.