数学の問題一覧

カテゴリ
以上
以下

2026記念問題

kiwiazarashi 自動ジャッジ 難易度:
4時間前

0

問題文

ある神社ではおみくじを販売していて、おみくじの内容について次のようなことが分かっています。

・くじは2026本あり、それぞれに運勢が1つ書いてある。
・運勢は7種類あり、大吉、中吉、小吉、凶、大凶、吉、平である。
・(大吉の本数):(中吉の本数)=5:7
・(中吉の本数):(小吉の本数)=9:11
・(小吉の本数):(凶の本数)=7:4
・(凶の本数):(大凶の本数)=11:8
・(吉の本数):(平の本数)=5:2

平の本数を求めてください。

解答形式

答えの数字を半角数字で入力してください。

雑談

ここ3年ぐらい吉しか引いてないです。

整数問題3

mathken 自動ジャッジ 難易度:
4時間前

0

問題文

以下の等式を満たす自然数 $a,b,c$ の組を全て求めよ。
$$a^b(c-1)+a+c=2^{bc-1}-a-b=2026$$

解答形式

$a,b,c$ の値をカンマ(,)で区切り、答えが複数ある場合は行を分けて答えてください。


1,2,3
12,34,56

4時間前

1

問題文

$2025^{2026}+2026^{2025}$ について以下の問いに答えよ。

$(1)$ $625$ で割った余りを求めよ。

$(2)$ 下 $4$ 桁の数を求めよ。

解答形式

答え二つを半角カンマ(,)で区切って答えてください。
例)123,456

n進数

mathken 自動ジャッジ 難易度:
4時間前

1

問題文

$n>10$ とする。
$n$ 進法で $2026_{(n)}$ と表される自然数が $2026$ で割り切れるような自然数 $n$ を小さいものから $3$ つ足し合わせた数を答えよ。

必要なら $1013$ は素数であること、 $m^2 \equiv 937 \pmod {1013}$ を満たす $1013$ 以下の自然数 $m$ は $2$ つのみで、その $1$ つが $472$ であることを用いてよい。

計算問題

mathken 自動ジャッジ 難易度:
4時間前

1

問題文

$$\frac{2^{22}-22^2-4-44^4}{2 \times 22+4 \times 44}= \space ?$$$?$ に入る自然数を答えよ。

整数問題2

mathken 自動ジャッジ 難易度:
4時間前

0

問題文

以下の二つの等式を満たす自然数 $a,b,c$ の組を全て求めよ。
$$\begin{cases} a-b=3c \\ a^3-b^3-c^3=c^5 \end{cases}$$

解答形式

$a,b,c$ の値をカンマ(,)で区切り、答えが複数ある場合は行を分けて答えてください。


1,2,3
12,34,56

整数問題4

mathken 自動ジャッジ 難易度:
4時間前

0

問題文

$0<m<n$ とする。以下の等式を満たす自然数 $m,n$ を全て求めよ。
$$\frac{(m+n-1)^4-(m+n-2)^4+m-n+1}{4(m+n-1)+m-n}=2026$$

解答形式

$m,n$ の値をカンマ(,)で区切り、答えが複数ある場合は行を分けて答えてください。


1,2
12,34

整数問題1

mathken 自動ジャッジ 難易度:
4時間前

0

問題文

自然数 $a,b,c$ が互いに異なる自然数であるとき
$$N=(9a-1)^2+9b^2+9c^2=(9a+1)^2-9b^2-9c^2$$と表される自然数 $N$ の最小値を求めよ。

極限とガウス記号

Auro 自動ジャッジ 難易度:
7時間前

0

問題文

正の整数 $n$ に対し,関数 $f_n(x)$ を
$$
f_n(x)=x\lfloor \dfrac{n}{x}\rfloor
$$
で定める.ただし,$x>0$ とする.
また,実数 $t$ に対し,$t$ 以下の最大の整数を $\lfloor t\rfloor$ で表す.


⑴ 方程式 $
f_n(x)=n$ が正の実数解を無限個もつことを示せ. また,$f_1(x)=1$ の正の実数解を,値が大きい順に
$$
a_1,a_2,a_3,\ldots
$$
とするとき,
$$
\lim_{m\to\infty}\sum_{k=m}^{2m} a_k
$$
を求めよ.
⑵ 座標平面における $y=f_n(x)$ のグラフのうち,$
\dfrac{1}{2}\le x\le 1
$ を満たす部分の長さの総和を $S_n$ とする.
このとき, $$ \lim_{n\to\infty}\dfrac{S_n}{n}
$$を求めよ.

解答形式

証明は入力せず、答えのみで良いです。
⑴の答えは1行目、⑵の答えは2行目に いずれも左詰めで入力してください。

入力例)
π 、√π、2e/3、log7 (自然対数)、(3+√2)π、5e√2、log10_2 (常用対数)

700A

MARTH 自動ジャッジ 難易度:
1日前

5

関数 $f:\mathbb{Z}^2\rightarrow \mathbb{Z}$ は以下を満たします.

  • $f(0,0)=1$
  • $n,m$ いずれかが $0$ 未満であるとき, $f(n,m)=0$.
  • $(n,m)\neq(0,0)$ を満たす非負整数の組 $(n,m)$ に対して, 以下が成立.

$$
\begin{aligned}
&f(n,m)\\\\
&=f(n-1,m)+2f(n,m-1)\\\\
&+f(n-2,m)-f(n-1,m-1)-f(n,m-2)
\end{aligned}
$$
このとき$f(10000,10000)$ を 素数 $4999$ で割った余りを求めてください.

整数問題 等式

reito 自動ジャッジ 難易度:
2日前

5

問題文

x,y,zを自然数とする。
xy+xz = x+y+z となるような(x,y,z)の組はいくつあるか。

解答形式

数字のみを記入すること。例:3組ある場合は 3

四面体

mathken 採点者ジャッジ 難易度:
2日前

0

問題文

四面体 $ABCD$ の各辺 $AB , AC , AD , CD , DB , BC$ の中点をそれぞれ $P , Q , R , S , T , U$ とする。四角形 $PQST , QRTU$ がともに長方形となるとき、
$AB^2+CD^2=AC^2+DB^2=AD^2+BC^2$
となることを示せ。

解答形式

簡単な証明をお書きください。