Furina

Furina

統計情報

フォロー数5
フォロワー数25
投稿した問題数23
コンテスト開催数5
コンテスト参加数3
解答された数825
いいねされた数28
解答した問題数276
正解した問題数232
正解率84.1%

人気問題

ΠMC002 E

Furina 自動ジャッジ 難易度:
14月前

126

問題文

整数 $n$ について,$\dfrac{10^n+11}{3}$ が平方数になるものは存在しますか?存在しないなら $-1$ を解答してください.存在する場合,最小の $n$ を解答してください.ただし答えは非常に大きくなる可能性があるので,$n$ を素数 $998244353$ で割ったあまりを解答してください.

解答形式

存在しないなら $-1$ を解答してください.存在する場合,最小の $n$ を解答してください.ただし答えは非常に大きくなる可能性があるので,$n$ を素数 $998244353$ で割ったあまりを解答してください.

A

Furina 自動ジャッジ 難易度:
7月前

121

問題文

$AB=13, AC=15$ なる三角形 $ABC$ について,直線 $BC$ 上に $AP=12$ なる点 $P$ がただ一つ存在しました.三角形 $ABC$ の面積としてありうる値の総和を求めてください.

解答形式

半角数字で解答してください.

RKC010

Furina 自動ジャッジ 難易度:
10月前

79

問題文

素数の組 $(p,q,r)$ であって,以下の等式
$$pq-64=r^4$$
を満たすものすべてについて,$p+q+r$ の総和を求めてください.

解答形式

半角整数値で解答してください.

B

Furina 自動ジャッジ 難易度:
7月前

75

問題文

一辺の長さが $4$ の正三角形 $ABC$ について,$BC$ の中点を $M$ とし,線分 $BC$ 上に $BD=1$ なる点 $D$ をとります.$3$ 点 $ABD$ を通る円と$3$ 点 $ACM$ を通る円との交点を $X$ とするとき,$AX$ の長さの $2$ 乗を求めてください.ただし,求める値は,互いに素な正整数 $a,b$ を用いて $\dfrac{b}{a}$ と表せるので,$a+b$ の値を解答してください.

解答形式

半角数字で解答してください.

ΠMC002 A

Furina 自動ジャッジ 難易度:
14月前

55

問題文

素数 $p$ に対して,$\dfrac{1}{p}$ を小数表記したときに循環する長さを $\Pi(p)$ で表します.正整数 $n$ に対し,$\Pi(p)=n$ なる $p$ のうち最小のものを $M(n)$ とするとき,以下の値を求めてください.ただし,有限小数の場合循環はしないとします.
$$M(1)+M(2)+M(3)+M(4)+M(5)+M(6)$$

解答形式

答えとなる数字のみを解答してください.

ΠMC002 B

Furina 自動ジャッジ 難易度:
14月前

51

問題文

$AB=100,AC=200$ なる $\triangle ABC$ において,$A$ 類似中線と $BC$ の交点を $X$ とします.$BX,CX$ がいずれも正整数値であるとき,$AX$ の取り得る正整数値の総和を求めてください.

解答形式

$AX$ の取り得る正整数値の総和を解答してください.

新着問題

OPMO2024

Furina 自動ジャッジ 難易度:
47日前

28

問題文

数列 ${a_n},{b_n},{c_n}$ を,$a_0=73,b_0=1227,c_0=5355$ および以下の式で定める:
$$(a_{n+1},b_{n+1},c_{n+1})=(2b_n-a_n^2,b_n^2-2a_nc_n,-c_n^2)$$
 $b_{404}$ を $5000$ で割った余りを求めよ.

解答形式

半角整数で解答してください.

C

Furina 自動ジャッジ 難易度:
2月前

3

問題文

円 $\Gamma$ に内接する凸四角形 $ABCD$ において,直線 $AB,CD$ の交点を $S$,$A$ における $\Gamma$ の接線と直線 $CD$ の交点を $T$ とします.$S,C,D,T$ がこの順に並んでおり,かつ,
$$AB=10,SC=16,TD=5,BC\cdot AD=32$$
が成立しているとき,線分 $SB$ の長さを求めてください.ただし求める長さは,正整数 $a,b$ を用いて $\sqrt{a}-b$ と表されるので,$a+b$ の値を解答してください.

解答形式

半角数字で入力してください。

D

Furina 自動ジャッジ 難易度:
2月前

3

問題文

$AB=2,AC=1$ をみたす三角形 $ABC$ の垂心を $H$,内心を $I$,外接円を $\Gamma$ とします.直線 $AH$ と $BI$ の交点を $D$ とし,$A$ における $\Gamma$ の接線と直線 $CD$ の交点を $X$ とすると,$AX=BX$ となりました.このとき,辺 $BC$ の長さを求めてください.ただし,求める値は,互いに素な正整数 $a,c$ と平方因子をもたない正整数 $b$ を用いて $\dfrac{a+\sqrt{b}}{c}$ と表されるので,$a\times b\times c$ を解答してください.

解答形式

半角数字で入力してください。

B

Furina 自動ジャッジ 難易度:
2月前

16

問題文

一辺の長さが $5$ の正方形 $ABCD$ の辺 $AB$ 上(端点は除く)に点 $P$ をとります.三角形 $ACP$ の外接円と三角形 $BDP$ の外接円が $P$ でない点 $Q$ で交わり,$DQ=4$ となりました.このとき,線分 $PQ$ の長さを求めてください.ただし,求める長さは,互いに素な正整数 $a,c$ および平方因子をもたない正整数 $b$ を用いて $\dfrac{a\sqrt{b}}{c}$ と表されるので,$a+b+c$ の値を解答してください.

解答形式

半角数字で入力してください。

A

Furina 自動ジャッジ 難易度:
2月前

30

問題文

垂心を $H$ とする鋭角三角形 $ABC$ において,直線 $AH$ と辺 $BC$ の交点を $D$ とすると,
$$BH=2,CH=7,DH=1$$
が成り立ちました.このとき,三角形 $ABC$ の面積の $2$ 乗を求めてください.

解答形式

半角数字で入力してください。

C

Furina 自動ジャッジ 難易度:
7月前

36

問題文

三角形 $ABC$ について,$\angle A$ の二等分線と $BC$ の交点を $D$,円 $ABD$ と $AC$ の交点を $E$,円 $BEC$ と $AB$ の交点を $F$ とし,$AD$ と $FC$ の交点を $P$ とするとき,$AF=2, AC=3, PE=1$ が成立しました.$AB$ の長さは互いに素な正整数 $a, b$ を用いて $\dfrac{a}{b}$ と表せるので,$a+b$ を解答してください.

解答形式

半角数字で解答してください.

開催したコンテスト

コンテスト名 日程 作成者
PGC005 2024-11-21 21:00
〜 2024-11-21 22:40
pomodor_ap pomodor_ap Furina Furina
FFMC001 2024-11-04 23:30
〜 2024-11-05 00:10
Furina Furina pomodor_ap pomodor_ap
N村杯Shortlist 001 2024-06-09 21:00
〜 2024-06-09 22:40
Furina Furina pomodor_ap pomodor_ap
ΠMC002 2023-10-27 22:00
〜 2023-10-27 23:20
Furina Furina pomodor_ap pomodor_ap JoeFight JoeFight conan_kun conan_kun
ΠMC002 Pre 2023-10-27 21:05
〜 2023-10-27 21:10
Furina Furina

参加したコンテスト

順位 コンテスト名 得点 終了日時 作成者
2 第3回まそらた杯 100 2024年7月6日21:00 masorata masorata
4 TMCMC001 1400 2024年6月22日22:00 Tiri7_Ma13a_ Tiri7_Ma13a_ pomodor_ap pomodor_ap anotoko anotoko HighSpeed HighSpeed
11 Nyannyan math contest 001 (NMC001) 600 2023年11月2日22:00 nmoon nmoon hiro1729 hiro1729 MARTH MARTH