全 4 件
感想を投稿してみましょう!この感想は正解した人だけにしか見えません!
この問題を解いた人はこんな問題も解いています
内接四角形ABCDとその対角線の交点Mについて、図のような条件が与えられたとき、線分ACの長さを求めてください。
半角数字で解答してください。
$${\displaystyle6\cdot\prod_{q=3}^{2023}\log_{q-1}q^{q+1}}$$は $1$ ではない非負整数 $k,l,m,n$ を用いて ${k! \cdot \log_lm^n}$と示されるので、$klmn$ の最小値を求めて下さい。
半角数字で入力して下さい
$2^{p}+7^{q}=r^{p+q-r}$を満たす素数の組$(p,q,r)$をすべて求めよ.
文字列$pqr$を,半角数字で解答してください.解が複数ある場合は, (1) $p$の値が小さい順 (2) $p$の値が等しい組は,$q$の値が小さい順 (3) $p,q$の値がともに等しい組は,$r$の値が小さい順 に,1行に1つずつ書いてください.
どなたか素数に限らない整数解を全て求めてくださるとありがたいです.
nを自然数とする。各位の数の積をs(n)とするとき、s(n)=nを満たすnの総和を求めよ ただし、nが1桁の時s(n)=s(10+n)が成り立つとする
半角数字で入力してください
図の条件のもとで、緑の正三角形の面積を求めてください。 ※ hexagram : 六芒星
半角数字で回答してください。
図の条件の下で、$AB^2+BC^2+CD^2+DA^2$ の値を求めてください。
【補助線主体の図形問題 #115】 今週の図形問題です。今回は重めの問題にしてみました。とはいえ、補助線が活躍するのはいつも通りです。じっくり腰を据えて挑戦してください!
${ \def\cm{\thinspace \mathrm{cm}} }$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。 (例) $12\cm$ → $\color{blue}{12.00}$ $10\sqrt{2}\cm$ → $\color{blue}{14.14}$ $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$ 入力を一意に定めるための処置です。 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。
2つの正方形が図のように配置されています。緑で示した角の大きさを求めてください。
半角数字で解答してください。 ただし、解答は度数法で、「°」や「度」といった単位を付けずに0以上360未満の数を解答してください。
${}$ 西暦2023年問題第7弾、今年最後の西暦問題です。ラストを飾るのは循環小数です。循環小数というテーマ自体が奥深いわけですが、その一端を味わえるようにしました。どうぞ最後までお付き合いください。
${}$ いつもの図形問題ですが、明日1月8日(日)は出題をお休みして、翌週1月15日(日)から再開する予定です。お待たせしていますが、またどうぞよろしくお願いします。
${}$ 解答は、$N$の値をそのまま入力してください。「$N=$」の記載は不要です。 (例) $N=107$ → $\color{blue}{107}$
半円が内接する長方形に、図のように線を引きました。赤と青で示した線分の長さがそれぞれ3,4で、ピンクで示した線分の長さが等しいとき、緑の線分の長さを求めてください。
$x=\sqrt{\fbox{アイ}}$です。文字列 アイ を解答してください。
【補助線主体の図形問題 #025】 このところ円がらみの出題が続いていたので、今回は直線図形だけで固めてみました。暗算でさくっと解いてしまってください!
${ \def\cm{\thinspace \mathrm{cm}} \def\mytri#1{\triangle \mathrm{#1}} }$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。 (例) $12\cm^2$ → $\color{blue}{12.00}$ $10\sqrt{2}\cm^2$ → $\color{blue}{14.14}$ $\dfrac{1+\sqrt{5}}{2} \cm^2$ → $\color{blue}{1.62}$ 入力を一意に定めるための処置です。 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。
図の条件の下で、$x$ で示した角の大きさを求めてください。 ただし、外側の三角形は鋭角三角形であるとします。
$x=a$ 度です $(0<a<30)$ 。$a$ の値を半角数字で解答してください。