自作問題1(組合せ)

contrail 自動ジャッジ 難易度: 数学 > 競技数学
2024年3月30日14:59 正解数: 10 / 解答数: 20 (正答率: 50%) ギブアップ数: 1

全 20 件

回答日時 問題 解答者 結果
2025年10月11日23:17 自作問題1(組合せ) Weskdohn
正解
2024年4月9日11:49 自作問題1(組合せ) gaaa
不正解
2024年4月9日11:24 自作問題1(組合せ) gaaa
不正解
2024年4月9日11:18 自作問題1(組合せ) gaaa
不正解
2024年4月9日11:17 自作問題1(組合せ) ゲスト
不正解
2024年4月9日11:14 自作問題1(組合せ) ゲスト
不正解
2024年3月31日23:35 自作問題1(組合せ) mogura
正解
2024年3月31日13:44 自作問題1(組合せ) jjmmxx3453
不正解
2024年3月30日20:50 自作問題1(組合せ) ゲスト
不正解
2024年3月30日20:50 自作問題1(組合せ) bzuL
正解
2024年3月30日20:49 自作問題1(組合せ) bzuL
不正解
2024年3月30日18:25 自作問題1(組合せ) natsuneko
正解
2024年3月30日18:15 自作問題1(組合せ) MARTH
正解
2024年3月30日18:14 自作問題1(組合せ) MARTH
不正解
2024年3月30日16:43 自作問題1(組合せ) dipuji49
正解
2024年3月30日16:38 自作問題1(組合せ) aaabbb
正解
2024年3月30日16:33 自作問題1(組合せ) aaabbb
不正解
2024年3月30日15:56 自作問題1(組合せ) imabc
正解
2024年3月30日15:44 自作問題1(組合せ) mahiro
正解
2024年3月30日15:11 自作問題1(組合せ) YoneSauce
正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

自作問題No.2

Tehom 自動ジャッジ 難易度:
14月前

15

問題文

$64$個の球 $a_0,a_1,...a_{63}$それぞれを白色と黒色で塗り分ける方法で、以下の条件を満たすものは何通りありますか

・任意の整数 $i,j$ $(0\leqq i\leqq7,0\leqq j\leqq4)$ に対し、
$\lbrace a_{8i+j},a_{8i+j+1},a_{8i+j+2},a_{8i+j+3}\rbrace$ に含まれる白色の球と黒色の球が共に偶数個
かつ、
 任意の整数 $k,l$ $(0\leqq k\leqq4,0\leqq l\leqq7)$ に対し、
$\lbrace a_{8k+l},a_{8k+l+8},a_{8k+l+16},a_{8k+l+24}\rbrace$ に含まれる白色の球と黒色の球が共に偶数個

解答形式

半角数字で解答してください.

円形じゃんけん

J_Koizumi_144 自動ジャッジ 難易度:
21月前

18

問題文

$10$人で輪になってじゃんけんをするとき,どの隣り合う$3$人も「あいこ」にならないような手の出し方は何通りありますか?

解答形式

半角数字で入力してください.

約数の個数の方程式

kusu394 自動ジャッジ 難易度:
18月前

17

問題文

自然数 $x$ に対して, $d(x)$ で $x$ の正の約数の個数を表します.
$$d(4n-1)+d(4n)=8$$ を満たす自然数 $n$ について, 小さいほうから $7$ 個の総和を求めてください.

解答形式

答えは正の整数値となるので, その整数値を半角で入力してください.

追記
=8 のところ =6 と書いてしまっていたため訂正しました
大変申し訳ありません

最小値

sdzzz 自動ジャッジ 難易度:
19月前

8

問題文

$0$ 以上 $1$ 以下の実数の組 $(x_0 , x_1 ,\ldots, x_{100})$ と正の実数の組 $(y_0 , y_1 ,\ldots ,y_{100})$ が以下の条件を満たしました.
$$
x_ny_n=n(0\leq n\leq 100),\quad y_0=2,\quad y_{100}=260
$$
この時,以下の値の最小値を求めてください.
$$
\sum_{k=0}^{99} \left(\sqrt{y_k^2+y_{k+1}^2-2y_ky_{k+1}\Bigl( x_kx_{k+1}+\sqrt{(1-x_k^2)(1-x_{k+1}^2)}\Bigr)}\right)
$$

解答形式

求める値は $\sqrt{m}$ と表せるので, $m$ の値を半角数字で解答してください.

線分の積

bzuL 自動ジャッジ 難易度:
22月前

22

問題文

直径 $10$ の円周上に $120$ 個の異なる点 $A_1,\ldots, A_{120}$があります.$120$ 個の点のうち $2$ 点を選ぶ方法は ${}_{120}\mathrm{C}_{2}$ 通りあります.この ${}_{120}\mathrm{C}_{2}$ 通りすべての二点の距離の総積の最大値を $M$ としたときに,$M$ は整数値になるので,$M$ の正の約数の個数を答えてください.

解答形式

半角数字で解答してください.

200C

MARTH 自動ジャッジ 難易度:
20月前

10

$n$ を正の整数とする.縦 $3$ 行,横 $3$ 列からなるマス目の各マスに $n,n+1,\ldots,n+8$ を重複なく書き入れる方法であって,以下を満たすものの数を $f(n)$ とします.

  • どの列,どの行についてもその $3$ つに書かれている $3$ 数を $3$ 辺の長さに持つ三角形が存在する.

ただし,回転や反転によって一致する数の書き込み方は,区別するものとします.$f(n)\lt3\times10^5$ を満たすとき,$f(n)$ としてあり得る最大の値を解答してください.

Sigma Problem

eq_K 自動ジャッジ 難易度:
16月前

12

問題文

以下の値を素数 $2017$ で割った余りを解答してください。ただし、$\lfloor x\rfloor$ は $x$ 以下の最大の整数を表します。

$\displaystyle\sum_{k=1}^{2023} \left\lfloor\dfrac{3}{7}×2^k\right\rfloor(-1)^{k+1}$

解答形式

非負整数を半角で入力してください.

5^nの上一桁は

kusu394 自動ジャッジ 難易度:
17月前

12

問題文

$5^n$ の十進法における上一桁の数が $1,2,3$ のいずれかであるような $9999$ 以下の正整数 $n$ はいくつありますか.ただし,$5^{9999}$ は十進法において $6990$ 桁であり,上一桁の数は $1$ です.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

素直な整数

kusu394 自動ジャッジ 難易度:
16月前

13

問題文

正整数 $N$ が 素直 であるとは以下の条件をともに満たすことを言います.

  • $N$ は十進法表記で $6$ 桁であり,各桁に $0$ も $9$ も含まない数である.
  • $N$ の上 $i$ 桁目を $a_i$ とするとき,「$a_1 \le a_2 \le \cdots \le a_6$」もしくは「$a_1 \ge a_2 \ge \cdots \ge a_6$」のいずれかが成り立つ.

素直な整数の総和を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

OMC不採用問題改題その2

bzuL 自動ジャッジ 難易度:
20月前

18

問題文

$f(n)=n ^{15}+21n^{10}+147n^5+343$ とします.
正整数 $n$ に対して, $f(n)$ が $5^m$ で割り切れるような最大の非負整数 $m$ を $g(n)$ と定めます.$10000$ 以下の正整数 $k $であって $g(n)=k $ を満たす正整数 $n$ が存在するような $k$ の総積を $3343$ で割った余りを解答してください.ただし,$3343$ は素数です.

解答形式

非負整数を解答してください.

Golden Gokiburi

simasima 自動ジャッジ 難易度:
19月前

62

問題文

大変だ!Golden Gokiburi が座標 $(0,0)$ に出たぞ!
Golden Gokiburi は 一回の移動で $(x,y)$ から $(x+1,y+1)(x,y+1)(x-1,y+1)(x+1,y)(x-1,y)(x,y-1)$ の6地点のうちいずれか一つに等確率で移動します。
$(3,7)$ にいるしましま君は不安で不安で仕方がありません。
$(0,0)$ にいる Golden Gokiburi が $900$ 回移動した後の $(3,7)$ と Golden Gokiburi との距離の $2$ 乗の期待値を求めてください。

解答形式

答えは非負整数になるので半角で解答してください。

SMC100-94

MARTH 自動ジャッジ 難易度:
23月前

9

$100\times 100$ のマス目があります. 上から $i$ 行目, 左から $j$ 列目のマスを $100(i-1)+j$ と呼ぶことにします. SMC 君は一般的な $6$ 面サイコロを $10000$ 回振り, $i$ 回目に振って出た目をマス $i$ に書き込みます. このとき, 以下の条件を満たす確率を $p$ とするとき, $6^{10000}p$ は整数になるので, 素数 $3299$ で割った余りを求めてください.

  • 任意の行について, その行のマスに書かれた整数の総和は偶数.
  • 任意の列について, その列のマスに書かれた整数の総和は $3$ の倍数.