自作問題1(組合せ)

contrail 自動ジャッジ 難易度: 数学 > 競技数学
2024年3月30日14:59 正解数: 9 / 解答数: 19 (正答率: 47.4%) ギブアップ数: 1

全 19 件

回答日時 問題 解答者 結果
2024年4月9日11:49 自作問題1(組合せ) gaaa
不正解
2024年4月9日11:24 自作問題1(組合せ) gaaa
不正解
2024年4月9日11:18 自作問題1(組合せ) gaaa
不正解
2024年4月9日11:17 自作問題1(組合せ) ゲスト
不正解
2024年4月9日11:14 自作問題1(組合せ) ゲスト
不正解
2024年3月31日23:35 自作問題1(組合せ) mogura
正解
2024年3月31日13:44 自作問題1(組合せ) jjmmxx3453
不正解
2024年3月30日20:50 自作問題1(組合せ) ゲスト
不正解
2024年3月30日20:50 自作問題1(組合せ) bzuL
正解
2024年3月30日20:49 自作問題1(組合せ) bzuL
不正解
2024年3月30日18:25 自作問題1(組合せ) natsuneko
正解
2024年3月30日18:15 自作問題1(組合せ) MARTH
正解
2024年3月30日18:14 自作問題1(組合せ) MARTH
不正解
2024年3月30日16:43 自作問題1(組合せ) dipuji49
正解
2024年3月30日16:38 自作問題1(組合せ) aaabbb
正解
2024年3月30日16:33 自作問題1(組合せ) aaabbb
不正解
2024年3月30日15:56 自作問題1(組合せ) imabc
正解
2024年3月30日15:44 自作問題1(組合せ) mahiro
正解
2024年3月30日15:11 自作問題1(組合せ) YoneSauce
正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

円形じゃんけん

J_Koizumi_144 自動ジャッジ 難易度:
10月前

14

問題文

$10$人で輪になってじゃんけんをするとき,どの隣り合う$3$人も「あいこ」にならないような手の出し方は何通りありますか?

解答形式

半角数字で入力してください.

自作問題No.2

Tehom 自動ジャッジ 難易度:
3月前

14

問題文

$64$個の球 $a_0,a_1,...a_{63}$それぞれを白色と黒色で塗り分ける方法で、以下の条件を満たすものは何通りありますか

・任意の整数 $i,j$ $(0\leqq i\leqq7,0\leqq j\leqq4)$ に対し、
$\lbrace a_{8i+j},a_{8i+j+1},a_{8i+j+2},a_{8i+j+3}\rbrace$ に含まれる白色の球と黒色の球が共に偶数個
かつ、
 任意の整数 $k,l$ $(0\leqq k\leqq4,0\leqq l\leqq7)$ に対し、
$\lbrace a_{8k+l},a_{8k+l+8},a_{8k+l+16},a_{8k+l+24}\rbrace$ に含まれる白色の球と黒色の球が共に偶数個

解答形式

半角数字で解答してください.

最小値

sdzzz 自動ジャッジ 難易度:
7月前

8

問題文

$0$ 以上 $1$ 以下の実数の組 $(x_0 , x_1 ,\ldots, x_{100})$ と正の実数の組 $(y_0 , y_1 ,\ldots ,y_{100})$ が以下の条件を満たしました.
$$
x_ny_n=n(0\leq n\leq 100),\quad y_0=2,\quad y_{100}=260
$$
この時,以下の値の最小値を求めてください.
$$
\sum_{k=0}^{99} \left(\sqrt{y_k^2+y_{k+1}^2-2y_ky_{k+1}\Bigl( x_kx_{k+1}+\sqrt{(1-x_k^2)(1-x_{k+1}^2)}\Bigr)}\right)
$$

解答形式

求める値は $\sqrt{m}$ と表せるので, $m$ の値を半角数字で解答してください.

OMC不採用問題改題その2

bzuL 自動ジャッジ 難易度:
8月前

18

問題文

$f(n)=n ^{15}+21n^{10}+147n^5+343$ とします.
正整数 $n$ に対して, $f(n)$ が $5^m$ で割り切れるような最大の非負整数 $m$ を $g(n)$ と定めます.$10000$ 以下の正整数 $k $であって $g(n)=k $ を満たす正整数 $n$ が存在するような $k$ の総積を $3343$ で割った余りを解答してください.ただし,$3343$ は素数です.

解答形式

非負整数を解答してください.

約数の個数の方程式

kusu394 自動ジャッジ 難易度:
6月前

16

問題文

自然数 $x$ に対して, $d(x)$ で $x$ の正の約数の個数を表します.
$$d(4n-1)+d(4n)=8$$ を満たす自然数 $n$ について, 小さいほうから $7$ 個の総和を求めてください.

解答形式

答えは正の整数値となるので, その整数値を半角で入力してください.

追記
=8 のところ =6 と書いてしまっていたため訂正しました
大変申し訳ありません

OMC没問

Furina 自動ジャッジ 難易度:
6月前

18

$3×3$ のマス目に $1$ から $9$ までの整数を重複なく書き込む方法のうち,辺を共有せず,頂点を共有するどの $2$ マスについても,そこに書き込まれた $2$ 数が互いに素であるものは何通りありますか?ただし,回転や反転によって一致するものも異なるものとみなします.

Golden Gokiburi

simasima 自動ジャッジ 難易度:
7月前

61

問題文

大変だ!Golden Gokiburi が座標 $(0,0)$ に出たぞ!
Golden Gokiburi は 一回の移動で $(x,y)$ から $(x+1,y+1)(x,y+1)(x-1,y+1)(x+1,y)(x-1,y)(x,y-1)$ の6地点のうちいずれか一つに等確率で移動します。
$(3,7)$ にいるしましま君は不安で不安で仕方がありません。
$(0,0)$ にいる Golden Gokiburi が $900$ 回移動した後の $(3,7)$ と Golden Gokiburi との距離の $2$ 乗の期待値を求めてください。

解答形式

答えは非負整数になるので半角で解答してください。

ΠMC002 B

Furina 自動ジャッジ 難易度:
13月前

51

問題文

$AB=100,AC=200$ なる $\triangle ABC$ において,$A$ 類似中線と $BC$ の交点を $X$ とします.$BX,CX$ がいずれも正整数値であるとき,$AX$ の取り得る正整数値の総和を求めてください.

解答形式

$AX$ の取り得る正整数値の総和を解答してください.

Make 10

J_Koizumi_144 自動ジャッジ 難易度:
10月前

15

$100\times 100$のマス目に整数(負でもよい)を書き込んで、各行・各列の積が全て$10$になるようにしたものを良い盤面と呼びます。良い盤面に書かれた数の$2$乗和をその良い盤面のスコアとします。
すべての良い盤面にわたるスコアの総和を$M$とするとき、$M$が$2$で割り切れる最大の回数を求めてください。

整数問題

rt3010 採点者ジャッジ 難易度:
8月前

3

問題文

$x,y,z$は整数とする。また、$p$は素数とする。
$x^{4}+y^{4}+z^{4}-2x^{2}y^{2}-2y^{2}z^{2}-2z^{2}x^{2}-8x^{2}yz-8xy^{2}z-8xyz^{2}=p$となるとき、$p$の最小値を求めよ。また、$p$が最小値をとるとき、$x,y,z$の組を全て求めよ。

解答形式

$p$の最小値を$p$=~の形式で1行目に、$x,y,z$の組を$(x,y,z)$=~ の形式で2行目以降にすべて書いてください。ジャッジは自分でするのであまり気にしないで自由に回答してください。

N2

orangekid 自動ジャッジ 難易度:
5月前

17

問題文

$17$で割り切れ、各桁の数の和も$17$で割り切れるような正整数を$\textbf{良い数}$と呼びます。$\textbf{相異なる}$良い数同士の差の絶対値としてあり得る最小値を求めなさい。

追記

不備が見つかったため、答えを変更しました。本当に申し訳ございません。

線分の積

bzuL 自動ジャッジ 難易度:
11月前

21

問題文

直径 $10$ の円周上に $120$ 個の異なる点 $A_1,\ldots, A_{120}$があります.$120$ 個の点のうち $2$ 点を選ぶ方法は ${}_{120}\mathrm{C}_{2}$ 通りあります.この ${}_{120}\mathrm{C}_{2}$ 通りすべての二点の距離の総積の最大値を $M$ としたときに,$M$ は整数値になるので,$M$ の正の約数の個数を答えてください.

解答形式

半角数字で解答してください.