あるサバイバルゲームには $2024$ 人の人が参加しており,以下を $2022$ 回繰り返します.
このとき,最後に残った二人に一度も対戦をしていない人が含まれる確率を求めてください.ただし,求める確率は互いに素な二つの正整数 $a,b$ を用いて $\dfrac{a}{b}$ と表すことができるため,$a+b$ を解答してください.
半角数字で解答してください.
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
$728^{(729^{730})} + 730^{(729^{728})}$ は $3$ で最大何回割れますか.
凸五角形 $ABCDE$ は以下を満たします. $$ \begin{cases} AB=BC=CD=DE \\\\ 2\angle{BAE} = \angle{CBA}\\\\ 2\angle{ECA} = \angle{AEC} = \angle{BAE} + 30^{\circ} \end{cases} $$ このとき,互いに素な正整数 $a,b$ を用いて $\angle{EDB}=\bigg(\dfrac{a}{b}\bigg)^{\circ}$と表すことができるので,$a+b$ を答えてください.
非負実数 $x,y,z$ が $x+y+z=1$ を満たすとします. $$ x^{5001}y^{5002} + y^{5001}z^{5002} +z^{5001}x^{5002} $$ の最大値は,互いに素な正整数 $a,b$ を用いて $\dfrac{a}{b}$ と表すことができます.$a+b$ を素数 $4999$ で割った余りを求めてください.
$1,\ldots,2024$ の並べ替え $a_1,\ldots,a_{2024}$ に対して,スコアを $$ \sum_{k=1}^{2024} (2024a_k-k-1)(a_k-2024k) $$ で定めます.$2024!$ 通りの並べ替えに対して,スコアとしてあり得る値はいくつありますか.
一辺の長さが $4$ の正三角形 $ABC$ について,$BC$ の中点を $M$ とし,線分 $BC$ 上に $BD=1$ なる点 $D$ をとります.$3$ 点 $ABD$ を通る円と$3$ 点 $ACM$ を通る円との交点を $X$ とするとき,$AX$ の長さの $2$ 乗を求めてください.ただし,求める値は,互いに素な正整数 $a,b$ を用いて $\dfrac{b}{a}$ と表せるので,$a+b$ の値を解答してください.
$AB=13, AC=15$ なる三角形 $ABC$ について,直線 $BC$ 上に $AP=12$ なる点 $P$ がただ一つ存在しました.三角形 $ABC$ の面積としてありうる値の総和を求めてください.
次の和を $10$ 進小数で表し、小数第 $61$ 位から第 $70$ 位までを求めよ。 $$ \sum_{n=1}^{9}\frac{n(10^{2n+1}-1)}{9\cdot10^{n^2+2n}} $$
小数第 $61$ 位から第 $70$ 位まで ($10$ 桁の数) を、半角で1行目に入力せよ。 2行目以降に改行して回答すると、不正解となるので注意せよ。
12色で,正八面体の各頂点を全ての頂点が異なる色になるように塗るとき,色の塗り方は何通りあるか求めよ.ただし,回転して一致するものは同じものと数える.
赤いボールと青いボールがそれぞれ十分に入っている袋から $50$ 個のボールを取り出して一列に並べました.このとき,次の条件を満たす取り出し方において,取り出した青いボールの個数としてあり得る値の総和を求めてください. ・連続する $3$ 個のボールの少なくとも $1$ つは赤いボールである.
$14^3$ の $16$ 個の正の約数を並び替えた数列を $a_1,\ldots,a_{16}$ とおき,$15^3$ の $16$ 個の正の約数を並び替えた数列を$b_1,\ldots,b_{16}$ とおきます.この二つの数列のスコアを $$ \sum_{k=1}^{16} \frac{a_k}{b_k} $$ で定めます.数列 $a,b$ の組として考えられるものは $(16!)^2$ 通りありますが,これらの組におけるスコアの(相加)平均を求めてください.ただし,求める値は互いに素な正整数 $p,q$ を用いて,$\dfrac{p}{q}$ と表されるため,$p+q$ を解答してください.
$2^{20}!!$ は $2$ で何回割り切れますか?
半角数字でお答え下さい。 計算機はご自由にお使いください。
実数 $a,b$ が $a+b=10$ を満たすとき,$a^3+b^3$ の最小値を求めてください.