bMC_H

bzuL 自動ジャッジ 難易度: 数学 > 高校数学
2024年7月14日21:00 正解数: 1 / 解答数: 16 (正答率: 6.3%) ギブアップ数: 4
この問題はコンテスト「bzuL Math Contest」の問題です。

問題文

正の実数に対して定義され,正の実数値を取る関数 $f$ であって,任意の正の実数 $x,y$ に対して,
$$
f(x)f(yf(x))=2024f(x+2024y)
$$
を満たすもののうち, $f(1)$ が整数になるものについて,$f(2)$ の整数部分としてありうる数はいくつありますか.

解答形式

半角数字で解答してください.


スポンサーリンク

解答提出

この問題は自動ジャッジの問題です。 解答形式が指定されていればそれにしたがって解答してください。

Discordでログイン Sign in with Google パスワードでログイン

ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。

または


おすすめ問題

この問題を解いた人はこんな問題も解いています

2月前

7

問題文

$1$ 以上 $20^{24}$ 以下の整数 $N$ であって、次の条件を満たすものはいくつあるか。

条件: 何度でも微分可能な実数値関数 $f$ であって、ある実数 $x$ に対して $f(x)\ne0$ であり、さらに任意の実数 $x$ に対して $$\frac{f(x)}{N}=f\left(\frac{x-1}{2}\right)+f\left(\frac{x+1}{2}\right)$$ を満たすようなものが存在する。

解答形式

条件を満たす $N$ の個数を、半角数字で1行目に入力せよ。
2行目以降に改行して回答すると、不正解となるので注意せよ。

bMC_F

bzuL 自動ジャッジ 難易度:
55日前

15

問題文

ある三角形の内心を中心とする半径 $2024$ の円が,その三角形の頂点のうちの一つと,その三角形の外心,垂心を通りました.この三角形の外接円の半径としてあり得る値の総和の整数部分を求めてください.

解答形式

半角数字で解答してください.


問題文

$n$ を $3$ 以上の整数とする。点 $\mathrm{O}$ を中心とする、半径 $1$ の円の形をしたピザがある。ピザの周上には、等間隔に点 $\mathrm{P}_1,\ldots,\mathrm{P}_n$ が並んでいる。

線分 $\mathrm{OP}_1$ 上に、線分 $\mathrm{OO'}$ の長さが $d$ となるような点 $\mathrm{O'}$ をとる。ここで $0< d < 1$ は定数である。ピザを線分 $\mathrm{O'P}_1,\ldots,\mathrm{O'P}_n$ によって分割し、分けられた $n$ 個のピザのうち線分 $\mathrm{P_1P_2,P_2P_3,\ldots, P_nP_1}$ を含む部分の面積を、それぞれ $S_1,\ldots,S_n$ とする。

$S_i$ の 平均はもちろん $\displaystyle \bar{S}= \frac{1}{n}\sum_{i=1}^{n}S_i=\frac{\pi}{n}$ である。では、$S_i$ の分散 $\displaystyle \sigma^2 = \frac{1}{n}\sum_{i=1}^{n}(S_i-\bar{S})^2$ はどうなるだろうか。以下の空欄を埋めよ。

(1)$\displaystyle \frac{\sigma ^2}{d^{\alpha}}$ が $d$ によらない定数となるような $\alpha$ の値は $\alpha=\fbox{ア}$ である。$n=12$ のとき、$\sigma^2$ を具体的に計算すると

$$
\sigma ^2 = \frac{\fbox{イ}-\sqrt{\fbox{ウ}}}{\fbox{エ}}d^{\fbox{ア}}
$$

である。

(2)極限 $\displaystyle \lim_{n\to\infty}n^{\beta}\sigma^2$ が $0$ でない有限の値に収束するような $\beta$ の値は $\beta=\fbox{オ}$ である。$\displaystyle d=\frac{1}{12\pi}$ のとき、その極限値は

$$
\lim_{n\to\infty}n^\fbox{オ}\sigma^2 = \frac{\fbox{カ}}{\fbox{キクケ}}
$$

である。

解答形式

ア〜カには、0から9までの数字が入る。
(1)の答えとして、文字列「アイウエ」を半角で1行目に入力せよ。
(2)の答えとして、文字列「オカキクケ」を半角で2行目に入力せよ。
なお、「ア」や「オ」には0や1が入ることもありうる。
また、分数はできるだけ約分された形で、根号の中身が最小となるように答えよ。
3行目以降に改行して回答すると、不正解となるので注意せよ。

削除

Lamenta ジャッジなし 難易度:
13日前

3

削除

[E] Centrosymmetry

halphy 自動ジャッジ 難易度:
4年前

4

問題文

$P$ を $n\times n$ 行列とする。$P$ の第 $(i, j)$ 成分と第 $(n-i+1, n-j+1)$ 成分がつねに一致するとき,$P$ を点対称行列と呼ぶことにする。例えば $n=4$ なら,$P$ は一般に

$$
P=\begin{pmatrix} a & b & h & g \\ c & d & f & e \\ e & f & d & c \\ g& h & b & a \end{pmatrix}
$$

という形をしている。$E'$ を $4\times 4$ の単位行列とし,$4\times 4$ 行列 $J'$ を

$$
J'=\begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}
$$

で定義する。

(1) 一般の $4\times 4$ 行列 $X$ に対して,$XJ'$ の $(\fbox{ア},\fbox{イ})$ 成分と $X$ の $(1,2)$ 成分は一致する。また,$J'X$ の $(\fbox{ウ},\fbox{エ})$ 成分と $X$ の $(1,2)$ 成分は一致する。よって, $4\times 4$ 行列 $P$ が点対称行列であることは,$J'PJ'=P$ が成り立つことと同値である。

(2) $E$ を $2\times 2$ の単位行列とし,$2\times 2$ 行列 $J$ を

$$
J=\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}
$$

で定義する。$4\times 4$ 点対称行列 $P$ が,ある $2\times 2$ 行列 $A,B,C,D$ を用いて

$$
P=\begin{pmatrix} A & B \\ C & D \end{pmatrix}
$$

と表せたとする。(1) と同様の考察より,$D=JAJ, B=JCJ$ である。$4\times 4$ 行列 $Q$ を

$$
Q=\frac{1}{\sqrt{2}}\begin{pmatrix} E & -J \\ J & E \end{pmatrix}
$$

で定めると,$Q^{\rm T}Q=\fbox{オ}$ であり

$$
Q^{\rm T}PQ=\begin{pmatrix} \fbox{カ}+\fbox{キク} & \fbox{ケ} \\ \fbox{コ} & \fbox{サシス}-\fbox{セソ} \end{pmatrix}
$$

が成り立つ。

(3) $p$ を実定数とする。(2) の結果を利用して,行列

$$
P=\begin{pmatrix} 0 & p & 0 & 1-p \\ 0 & p^2 & 1-p & p(1-p) \\ p(1-p) & 1-p & p^2 & 0 \\ 1-p & 0 & p & 0 \end{pmatrix}
$$

の固有値を求めよう。$p=\cfrac{13}{15}$ のとき,$P$ の固有値は大きい順に

$$
\fbox{タ}, \frac{\fbox{チ}}{\fbox{ツ}}, \frac{\fbox{テ}}{\fbox{トナ}}, \frac{\fbox{ニ}}{\fbox{ヌネノ}}
$$

である。

解答形式

空欄 $\fbox{ア}$ 〜 $\fbox{ノ}$ には,半角数字 0 - 9 ,記号 - ,4×4行列 E', J' ,2×2行列 E, J, A, C, O のいずれかが当てはまります(B, Dを使って解答することはできません。O は零行列を表します)。$\fbox{ア}$ 〜 $\fbox{ノ}$ に当てはまるものを改行区切りで入力してください。分数はこれ以上約分できない形で解答してください。

幾何

sdzzz 自動ジャッジ 難易度:
7日前

3

問題文

$AB\lt AC$ なる鋭角三角形 $ABC$ があり,$BC$ の中点を $M$ とします.また,直線 $AB$ に $B$ で接し $M$ を通る円を $\Gamma_1$ ,直線 $AC$ に $C$ で接し $M$ を通る円を $\Gamma_2$ とし,直線 $AM$ と $\Gamma_1,\Gamma_2$ との交点のうち $M$ でない方をそれぞれ $D,E$ ,$DE$ の中点を $F$ ,$\Gamma_1$ と $\Gamma_2$ の交点を $G$ とした時,以下が成り立ちました.
$$
AM:MG=3:1,\quad AC=24,\quad CF=10
$$
この時,$BC^2$ の値を求めてください.

解答形式

例)半角数字で入力してください。


問題文

焼き鳥はタレに限るという垂川さんと、いやいや塩しかありえないという塩見さんは、激論の末、ゲームで決着をつけることになった。

$N,M$ をそれぞれ $1$ 以上 $2024$ 以下の整数とする。同じ大きさの焼き鳥が $N\times M$ の長方形状に並べられている。白と黒の串がたくさんある。垂川さんと塩見さんは、縦横いずれかの列または行を選んで、白または黒の串を端まで刺し通すという行動を、垂川さんから始めて交互に行う。ただし、各列または行にはそれぞれ $1$ 本の串しか刺し通すことができない。

合計 $N+M$ 本の串を刺し終わったとき、刺された串の色が縦と横で同じ焼き鳥の数を $S$、異なる焼き鳥の数を $D$ とする。$S>D$ ならば垂川さんの勝ち、$S<D$ なら塩見さんの勝ち、$S=D$ なら引き分けとする。

垂川さんの行動にかかわらず、うまく行動すれば塩見さんが必ず勝てるような組 $(N,M)$ はいくつあるか。

解答形式

条件を満たす組 $(N,M)$ の数を半角数字で1行目に入力せよ。
2行目以降に改行して回答すると、不正解となるので注意せよ。

[B] Ising Othello

ofukufukufuku 自動ジャッジ 難易度:
4年前

6

問題文

片面が黒色、もう片面が白色のオセロが一直線に$N$個並んでいる。1秒経過するごとに,$N$個のオセロから無作為に1つ選び裏返す。

時刻$t(\geq0)$における黒色のオセロの個数を$A_N(t)$で表すとする。$A_4(0)=2$のとき$A_4(2)=2$となる条件付き確率を$P_1$,$A_8(0)=2$のとき$A_8(3)=3$となる条件付き確率を$P_2$とすると,
$$
P_1=\frac{\fbox{ア}}{\fbox{イ}},~~~~P_2=\frac{\fbox{ウ}}{\fbox{エ}}
$$である.

時刻$t(\geq0)$における$A_N(t)$の期待値を$\mu_N(t)$とすると,以下の漸化式が成立する。
$$
\mu_N(t+1)=\left(\fbox{オ}-\frac{\fbox{カ}}{\fbox{キ}}\right)\mu_N(t)+\fbox{ク}
$$これより,
$$
\lim_{t\to\infty}\mu_{50}(t)=\fbox{ケ}
$$となる。

解答形式

空欄 $\fbox{ア}$〜$\fbox{ク}$には,自然数あるいは N が入る。それぞれに当てはまる数字もしくはアルファベットを改行区切りで入力せよ。なお,分数はこれ以上約分できない形にすること。

OMC没問3

natsuneko 自動ジャッジ 難易度:
10月前

3

問題文

$AB:AC=5:3$ を満たす鋭角三角形 $ABC$ があり, 線分 $AB$ 上の点 $X$ と線分 $AC$ 上の点 $Y$ が$XY∥BC$ を満たしています. また, 三角形 $AYB$ の外接円と三角形 $AXC$ の外接円の交点のうち, $A$ でない方を $P$ とすると, $P$ は線分 $BC$ 上にありました. このとき, 三角形 $ABC$ の外接円と直線 $AP$ の交点のうち, $A$ でない方を $Q$ とし, 直線 $AP$ と線分 $BC$ の垂直二等分線の交点を $R$ とします. また, 線分 $PR$ を直径とする円と三角形 $ABC$ の外接円は $2$ 点 $S,T$ で交わり, 直線 $ST$ と直線 $PQ$ の交点を $U$ とすると, $PU=QU=5$ となりました. このとき, 線分 $AR$ の長さを求めて下さい. ただし, 答えは正整数 $a,b$ を用いて $a +
\sqrt{b} $ と表されるため, $a+b$ の値を解答して下さい.

解答形式

正整数値を解答して下さい.

求値問題5

Kinmokusei 自動ジャッジ 難易度:
3年前

5

問題文

次の文章の空欄を埋めてください。

$n$個の実数$x_1,x_2,\cdots,x_n$が、$x_1+2x_2+3x_3+\cdots+nx_n=n$を満たすとき、$x_1^2+x_2^2+\cdots+x_n^2$の最小値を$m_n$とすると、
$$
m_n=\frac{\fbox アn}{(n+\fbox イ)(\fbox ウn+1)}
$$
であり、
$$
\lim_{n\rightarrow\infty}\left(m_1+\frac{m_2}{2}+\cdots+\frac{m_n}{n}\right)=\fbox{エオ}\left(-\frac{1}{\fbox カ}+\ln{\fbox キ}\right)
$$
である。

解答形式

$\fbox ア~\fbox キ$には$1$以上$9$以下の整数が入ります。文字列アイウエオカキを半角数字で解答してください。
例: $\fbox ア=1,\fbox イ=2,\fbox ウ=3,\fbox {エオ}=45,\fbox カ=6,\fbox キ=7$ $\rightarrow$ $1234567$ と解答

bMC_G

bzuL 自動ジャッジ 難易度:
55日前

19

問題文

$1,\ldots,2024$ の並べ替え $a_1,\ldots,a_{2024}$ に対して,スコア
$$
\sum_{k=1}^{2024} (2024a_k-k-1)(a_k-2024k)
$$
で定めます.$2024!$ 通りの並べ替えに対して,スコアとしてあり得る値はいくつありますか.

解答形式

半角数字で解答してください.

bMC_D

bzuL 自動ジャッジ 難易度:
55日前

46

問題文

非負実数 $x,y,z$ が $x+y+z=1$ を満たすとします.
$$
x^{5001}y^{5002} + y^{5001}z^{5002} +z^{5001}x^{5002}
$$
の最大値は,互いに素な正整数 $a,b$ を用いて $\dfrac{a}{b}$ と表すことができます.$a+b$ を素数 $4999$ で割った余りを求めてください.

解答形式

半角数字で解答してください.