bMC_H

bzuL 自動ジャッジ 難易度: 数学 > 高校数学
2024年7月14日21:00 正解数: 1 / 解答数: 16 (正答率: 6.3%) ギブアップ数: 7
この問題はコンテスト「bzuL Math Contest」の問題です。

問題文

正の実数に対して定義され,正の実数値を取る関数 $f$ であって,任意の正の実数 $x,y$ に対して,
$$
f(x)f(yf(x))=2024f(x+2024y)
$$
を満たすもののうち, $f(1)$ が整数になるものについて,$f(2)$ の整数部分としてありうる数はいくつありますか.

解答形式

半角数字で解答してください.


スポンサーリンク

解答提出

この問題は自動ジャッジの問題です。 解答形式が指定されていればそれにしたがって解答してください。

Discordでログイン Sign in with Google パスワードでログイン

ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。

または


おすすめ問題

この問題を解いた人はこんな問題も解いています

幾何

katsuo_temple 自動ジャッジ 難易度:
2月前

9

問題文

三角形$ABC$において,$A,B,C$から対辺に下ろした垂線の足をそれぞれ$D,E,F$とし,垂心を$H$とします.三角形$DEF$の外接円と三角形$HBC$の外接円の交点を$P,Q$とし,$EF$の中点を$M$とします.直線$HM$と直線$PQ$の交点を$R$とすると,$DR$は$AB$の中点を通り,$BC$の中点を$N$とすると,$$ND=2 CE=5$$が成立しました.このとき,$AB$の長さの二乗は互いに素な正整数$a,b$を用いて$\dfrac{a}{b}$と表せるので,$a +b$の値を解答して下さい.

解答形式

半角で解答して下さい.

平面図形

taku1729 自動ジャッジ 難易度:
5月前

7

問題文

△ABCの内心をI、△ABCの外接円とAIの交点をL(≠A)、AB上にD(≠A,B)をとったとき以下が成立しました。$$LI=LD,AI=4,AD=5,BL=8$$DBの長さを解答してください。

解答形式

半角数字で入力してください。

第2問

sulippa 採点者ジャッジ 難易度:
5月前

1

問題文

整数辺を持つ直角三角形のうち、その斜辺を a、内接円の半径を r としたとき、等式
$a^2 - 4ar - 4r^2 = r$
を満たすものを考える。
そのような三角形すべてのうち、内接円の半径 r が 1000 未満であるもの全ての、面積の総和を求めよ。

解答形式

半角スペースなし

F

nmoon 自動ジャッジ 難易度:
45日前

7

問題文

$AB \lt AC$ を満たす鋭角三角形 $ABC$ の垂心を $H$,とする.直線 $BH, CH$ と三角形 $ABC$ の外接円との交点をそれぞれ $E (\not = B) , F (\not = C)$ とし,辺 $AB , AC$ と 線分 $EF$ との交点をそれぞれ $P , Q$ とする.直線 $AC$ に関して $P$ と対称な点を $R$,直線 $AB$ に関して $Q$ と対称な点を $S$ とし,三角形 $RSH$ の外心を $O$ とすると,以下が成立した.

$$ AH = 3 , BC = 4 , AO = 1$$

このとき,$AB$ の長さを求めてください.

解答形式

互いに素な正整数 $b , c$ および正整数 $a$ を用いて $\dfrac{\sqrt{a} - b}{c}$ と表されるので,$a + b + c$ を答えてください.

H

kusu394 自動ジャッジ 難易度:
11月前

11

問題文

点 $O$ を中心とする半径 $1$ の円と,その円に内接する正 $169$ 角形 $A_1A_2\cdots A_{169}$ が与えられています.この正 $169$ 角形の頂点のうち,$A_{169}$ を除いた $168$ 頂点から $3$ 点を選ぶ方法は ${}_{168}\mathrm{C}_3$ 通り考えられますが,それらすべてについて選んだ $3$ 点を頂点とする三角形の垂心と $O$ の距離の $2$ 乗の総和を解答してください.(総和の $2$ 乗ではないことに注意してください.)

C

nmoon 自動ジャッジ 難易度:
12月前

15

問題文

三角形 $ABC$ の外心を $O$,垂心を $H$,外接円を $\Gamma$ とする.そして,以下のように点を4つとる.

  • 直線 $BH$ と $\Gamma$ との交点を $P(\not=B)$ とする.
  • 直線 $PO$ と $\Gamma$ との交点を $Q(\not=P)$ とする.
  • 直線 $QH$ と $\Gamma$ との交点を $R(\not=Q)$ とする.
  • 直線 $RO$ と $\Gamma$ との交点を $S(\not=R)$ とする.

このとき,3点 $ C,H,S$ が同一直線上にあった.

$$AH=17 , AO=11$$

のとき,三角形 $ABC$ の面積を求めてください.

解答形式

答えを2乗した値は,互いに素な2つの正整数 $a,b$ を用いて $\displaystyle\frac{a}{b}$ と表されるので,$a+b$ を求めてください.


問題文

$n$ を $3$ 以上の整数とする。点 $\mathrm{O}$ を中心とする、半径 $1$ の円の形をしたピザがある。ピザの周上には、等間隔に点 $\mathrm{P}_1,\ldots,\mathrm{P}_n$ が並んでいる。

線分 $\mathrm{OP}_1$ 上に、線分 $\mathrm{OO'}$ の長さが $d$ となるような点 $\mathrm{O'}$ をとる。ここで $0< d < 1$ は定数である。ピザを線分 $\mathrm{O'P}_1,\ldots,\mathrm{O'P}_n$ によって分割し、分けられた $n$ 個のピザのうち線分 $\mathrm{P_1P_2,P_2P_3,\ldots, P_nP_1}$ を含む部分の面積を、それぞれ $S_1,\ldots,S_n$ とする。

$S_i$ の 平均はもちろん $\displaystyle \bar{S}= \frac{1}{n}\sum_{i=1}^{n}S_i=\frac{\pi}{n}$ である。では、$S_i$ の分散 $\displaystyle \sigma^2 = \frac{1}{n}\sum_{i=1}^{n}(S_i-\bar{S})^2$ はどうなるだろうか。以下の空欄を埋めよ。

(1)$\displaystyle \frac{\sigma ^2}{d^{\alpha}}$ が $d$ によらない定数となるような $\alpha$ の値は $\alpha=\fbox{ア}$ である。$n=12$ のとき、$\sigma^2$ を具体的に計算すると

$$
\sigma ^2 = \frac{\fbox{イ}-\sqrt{\fbox{ウ}}}{\fbox{エ}}d^{\fbox{ア}}
$$

である。

(2)極限 $\displaystyle \lim_{n\to\infty}n^{\beta}\sigma^2$ が $0$ でない有限の値に収束するような $\beta$ の値は $\beta=\fbox{オ}$ である。$\displaystyle d=\frac{1}{12\pi}$ のとき、その極限値は

$$
\lim_{n\to\infty}n^\fbox{オ}\sigma^2 = \frac{\fbox{カ}}{\fbox{キクケ}}
$$

である。

解答形式

ア〜カには、0から9までの数字が入る。
(1)の答えとして、文字列「アイウエ」を半角で1行目に入力せよ。
(2)の答えとして、文字列「オカキクケ」を半角で2行目に入力せよ。
なお、「ア」や「オ」には0や1が入ることもありうる。
また、分数はできるだけ約分された形で、根号の中身が最小となるように答えよ。
3行目以降に改行して回答すると、不正解となるので注意せよ。

問題6

tomorunn 自動ジャッジ 難易度:
2月前

18

問題文

3以上の正整数 $n$に対し, $$ {}_nC_1, {}_nC_2, \dots, {}_nC_{n-1} $$の $n-1$個の数から $n-2$個を選んだときのそれらの最大公約数を $d$ とする.
全ての選び方について $d$ の総和を $d(n)$とする.100以下の$n$であって, $d(n)\le100$となる $n$の個数を求めよ。

解答形式

半角数字で入力してください。

[E] Centrosymmetry

halphy 自動ジャッジ 難易度:
5年前

4

問題文

$P$ を $n\times n$ 行列とする。$P$ の第 $(i, j)$ 成分と第 $(n-i+1, n-j+1)$ 成分がつねに一致するとき,$P$ を点対称行列と呼ぶことにする。例えば $n=4$ なら,$P$ は一般に

$$
P=\begin{pmatrix} a & b & h & g \\ c & d & f & e \\ e & f & d & c \\ g& h & b & a \end{pmatrix}
$$

という形をしている。$E'$ を $4\times 4$ の単位行列とし,$4\times 4$ 行列 $J'$ を

$$
J'=\begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}
$$

で定義する。

(1) 一般の $4\times 4$ 行列 $X$ に対して,$XJ'$ の $(\fbox{ア},\fbox{イ})$ 成分と $X$ の $(1,2)$ 成分は一致する。また,$J'X$ の $(\fbox{ウ},\fbox{エ})$ 成分と $X$ の $(1,2)$ 成分は一致する。よって, $4\times 4$ 行列 $P$ が点対称行列であることは,$J'PJ'=P$ が成り立つことと同値である。

(2) $E$ を $2\times 2$ の単位行列とし,$2\times 2$ 行列 $J$ を

$$
J=\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}
$$

で定義する。$4\times 4$ 点対称行列 $P$ が,ある $2\times 2$ 行列 $A,B,C,D$ を用いて

$$
P=\begin{pmatrix} A & B \\ C & D \end{pmatrix}
$$

と表せたとする。(1) と同様の考察より,$D=JAJ, B=JCJ$ である。$4\times 4$ 行列 $Q$ を

$$
Q=\frac{1}{\sqrt{2}}\begin{pmatrix} E & -J \\ J & E \end{pmatrix}
$$

で定めると,$Q^{\rm T}Q=\fbox{オ}$ であり

$$
Q^{\rm T}PQ=\begin{pmatrix} \fbox{カ}+\fbox{キク} & \fbox{ケ} \\ \fbox{コ} & \fbox{サシス}-\fbox{セソ} \end{pmatrix}
$$

が成り立つ。

(3) $p$ を実定数とする。(2) の結果を利用して,行列

$$
P=\begin{pmatrix} 0 & p & 0 & 1-p \\ 0 & p^2 & 1-p & p(1-p) \\ p(1-p) & 1-p & p^2 & 0 \\ 1-p & 0 & p & 0 \end{pmatrix}
$$

の固有値を求めよう。$p=\cfrac{13}{15}$ のとき,$P$ の固有値は大きい順に

$$
\fbox{タ}, \frac{\fbox{チ}}{\fbox{ツ}}, \frac{\fbox{テ}}{\fbox{トナ}}, \frac{\fbox{ニ}}{\fbox{ヌネノ}}
$$

である。

解答形式

空欄 $\fbox{ア}$ 〜 $\fbox{ノ}$ には,半角数字 0 - 9 ,記号 - ,4×4行列 E', J' ,2×2行列 E, J, A, C, O のいずれかが当てはまります(B, Dを使って解答することはできません。O は零行列を表します)。$\fbox{ア}$ 〜 $\fbox{ノ}$ に当てはまるものを改行区切りで入力してください。分数はこれ以上約分できない形で解答してください。

OMC不採用問題1

Tehom 自動ジャッジ 難易度:
11月前

4

問題文

$\displaystyle\frac{728^{3^m}+730^{3^n}}{3^{m+n}}$ が整数となるような正整数 $(m,n)$ の組すべてについて, $mn$ の総和を求めてください.

解答形式

半角数字で解答してください.

求値幾何

Ryomanic 自動ジャッジ 難易度:
3月前

7

問題文

△ABCの内接円が辺ABと点D、辺BCと点E、辺CAと点Fで接する。角ACBの二等分線と辺ABの交点をG点Dから線分EFに引いた垂線と辺BCの交点をH とすると、
$$BG=8,BD=6,BH=\frac{31}{2}$$
となった。
この時HCの長さを求めよ。

解答形式

求める長さは互いに素なa,bで$$\frac{a}{b}$$と表せるのでa+bを解答してください。

D

wasab1 自動ジャッジ 難易度:
12月前

4

問題文

$AB=2,AC=1$ をみたす三角形 $ABC$ の垂心を $H$,内心を $I$,外接円を $\Gamma$ とします.直線 $AH$ と $BI$ の交点を $D$ とし,$A$ における $\Gamma$ の接線と直線 $CD$ の交点を $X$ とすると,$AX=BX$ となりました.このとき,辺 $BC$ の長さを求めてください.ただし,求める値は,互いに素な正整数 $a,c$ と平方因子をもたない正整数 $b$ を用いて $\dfrac{a+\sqrt{b}}{c}$ と表されるので,$a\times b\times c$ を解答してください.

解答形式

半角数字で入力してください。