最小値

sdzzz 自動ジャッジ 難易度: 数学 > 高校数学
2024年3月31日14:47 正解数: 4 / 解答数: 8 (正答率: 50%) ギブアップ数: 1

問題文

$0$ 以上 $1$ 以下の実数の組 $(x_0 , x_1 ,\ldots, x_{100})$ と正の実数の組 $(y_0 , y_1 ,\ldots ,y_{100})$ が以下の条件を満たしました.
$$
x_ny_n=n(0\leq n\leq 100),\quad y_0=2,\quad y_{100}=260
$$
この時,以下の値の最小値を求めてください.
$$
\sum_{k=0}^{99} \left(\sqrt{y_k^2+y_{k+1}^2-2y_ky_{k+1}\Bigl( x_kx_{k+1}+\sqrt{(1-x_k^2)(1-x_{k+1}^2)}\Bigr)}\right)
$$

解答形式

求める値は $\sqrt{m}$ と表せるので, $m$ の値を半角数字で解答してください.


スポンサーリンク

解答提出

この問題は自動ジャッジの問題です。 解答形式が指定されていればそれにしたがって解答してください。

Discordでログイン Sign in with Google パスワードでログイン

ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。

または


おすすめ問題

この問題を解いた人はこんな問題も解いています

よくわからないGame

Weskdohn 自動ジャッジ 難易度:
3月前

8

問題

Weskdohn君は,次のゲームを行うことになりました.

正$733$角形のマークが書かれたカードW:$W_1W_2 \ldots W_{733}$から一枚選ぶ操作をOPE1と言い,これを$X$回繰り返します.
但し$X$について次の事実がわかっています.

正$3$角形のマークが書かれたカードS:$S_1S_2 S_3$と正$281$角形のマークが書かれたカードN:$N_1N_2 \ldots N_{281}$
について,それぞれ一枚ずつ取り出す操作をOPE2といい,OPE2を973回繰り返した場合の数を$X$通りとする.


ゲームで選んだカードWの組み合わせは$Y$通りと書けるので,$Y_{[9]}$の下三桁$n$を求めて下さい.

但し,異なる番号が振られた同じ種類のカード(例えば$E_d$と$E_h$)は互いに区別できるとし,また$O_{[K]}$は,$O$を$K$進法で書いた時の値とします.

解答形式

求めた値を,半角で入力して下さい.
ex)答えが6106→6106と入力.
また,001のような数値が答えの場合は、0をなくさず001のまま回答して下さい.

Matrix Triangle

MARTH 自動ジャッジ 難易度:
9月前

9

$n$ を正の整数とする.縦 $3$ 行,横 $3$ 列からなるマス目の各マスに $n,n+1,\ldots,n+8$ を重複なく書き入れる方法であって,以下を満たすものの数を $f(n)$ とします.

  • どの列,どの行についてもその $3$ つに書かれている $3$ 数を $3$ 辺の長さに持つ三角形が存在する.

ただし,回転や反転によって一致する数の書き込み方は,区別するものとします.$f(n)\lt3\times10^5$ を満たすとき,$f(n)$ としてあり得る最大の値を解答してください.

5^nの上一桁は

kusu394 自動ジャッジ 難易度:
5月前

11

問題文

$5^n$ の十進法における上一桁の数が $1,2,3$ のいずれかであるような $9999$ 以下の正整数 $n$ はいくつありますか.ただし,$5^{9999}$ は十進法において $6990$ 桁であり,上一桁の数は $1$ です.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.


問題文

三角形 $ABC$ があり,以下が成り立っています:

$$AB = 7 , \angle A + 2\angle C = 60^{ \circ } .$$

いま,辺 $BC$ 上に $\angle CAP = 3\angle BAP$ をみたす点 $P$ をとり,さらに辺 $AC$ 上に $\angle APQ = 2\angle ACB$ をみたす点 $Q$ をとったところ,$BQ = 2$ が成立しました.このとき,線分 $AC$ の長さは互いに素な正整数 $a , b$ を用いて $\dfrac{ a }{ b }$ と表せるので,$a + b$ を解答してください.

解答形式

半角数字で解答してください.

円形じゃんけん

J_Koizumi_144 自動ジャッジ 難易度:
10月前

14

問題文

$10$人で輪になってじゃんけんをするとき,どの隣り合う$3$人も「あいこ」にならないような手の出し方は何通りありますか?

解答形式

半角数字で入力してください.

G1

orangekid 自動ジャッジ 難易度:
5月前

10

問題文

三角形$ABC$は$|AB|=84$、$|BC|=|CA|=72$を満たす二等辺三角形です。この三角形の垂心を$H$、頂点$A, B, C$から延びる垂線の足をそれぞれ$D,E,F$と置きます。さらに、直線$CF$上に$|DF|=|DG|$を満たす$F$でない点$G$をとります。この時、四角形$DFEG$の面積は互いに素な正整数$p,r$と平方因子を持たない数$q$を用いて$\dfrac{p\sqrt{q}}{r}$と表されるので、$p+q+r$を解答してください。ただし、$|AB|$で$AB$間の距離を表すものとします。

解答形式

半角数字で解答してください。

自作問題No.1

Tehom 自動ジャッジ 難易度:
5月前

7

問題文

凸四角形$ABCD$は$\angle{BAC}$$=$$12^\circ$$,$$\angle {CAD}$$=$$30^\circ$$,$$\angle{ACD}$$=$$24^\circ$$,$$AB=CD$を満たします.このとき、$\angle{ADB}$の値は互いに素な正整数$a,b$を用いて$\dfrac{a}{b}$度となるので、積$ab$の値を求めてください.

解答形式

半角数字で解答してください.

自作問題1(組合せ)

contrail 自動ジャッジ 難易度:
7月前

19

問題文

三角柱 $ABC-DEF$ があり,いま点 $P$ は頂点 $A$ にいます.点 $P$ が隣り合う頂点に移動する操作を $12$ 回繰り返して点 $A$ に戻るように移動する方法すべてに対して,上下に移動する回数の総和を求めてください.

ただし上下に移動するとは,頂点 $A,B,C$ のいずれから頂点 $D,E,F$ のいずれかに移動すること,またその逆を意味します.

解答形式

半角数字で解答してください.

OMC没問

Furina 自動ジャッジ 難易度:
6月前

18

$3×3$ のマス目に $1$ から $9$ までの整数を重複なく書き込む方法のうち,辺を共有せず,頂点を共有するどの $2$ マスについても,そこに書き込まれた $2$ 数が互いに素であるものは何通りありますか?ただし,回転や反転によって一致するものも異なるものとみなします.

自作問題No.2

Tehom 自動ジャッジ 難易度:
3月前

14

問題文

$64$個の球 $a_0,a_1,...a_{63}$それぞれを白色と黒色で塗り分ける方法で、以下の条件を満たすものは何通りありますか

・任意の整数 $i,j$ $(0\leqq i\leqq7,0\leqq j\leqq4)$ に対し、
$\lbrace a_{8i+j},a_{8i+j+1},a_{8i+j+2},a_{8i+j+3}\rbrace$ に含まれる白色の球と黒色の球が共に偶数個
かつ、
 任意の整数 $k,l$ $(0\leqq k\leqq4,0\leqq l\leqq7)$ に対し、
$\lbrace a_{8k+l},a_{8k+l+8},a_{8k+l+16},a_{8k+l+24}\rbrace$ に含まれる白色の球と黒色の球が共に偶数個

解答形式

半角数字で解答してください.


問題文

正四面体ABCDを考える。正四面体の全ての面に接する内接球の中心を点O、∠AOB=θと定める。

θと108°のうちどちらの方が大きいか。

解答形式

θの方が大きい場合はA、108°の方が大きい場合はB、θ=108°の場合はCと半角入力してください。

三角形の面積の和

Fuji495616 自動ジャッジ 難易度:
7月前

4

問題文

$∠$A=69°、$∠ $B=66°、$∠ $C=45°である三角形ABCがあります。辺AC上にAB=DBとなる点Dをとり、辺BC上にAB=AEとなる点Eをとりました。DBとEAの交点をFとします。三角形AFBの周りの長さが12cmの時、三角形ABCの面積の2倍と三角形ABFの面積の和は何cm$^2$ですか。

解答形式

半角数字で入力してください。
例)10