N3

orangekid 自動ジャッジ 難易度: 数学 > 競技数学
2024年6月6日12:41 正解数: 9 / 解答数: 14 (正答率: 64.3%) ギブアップ数: 0

全 14 件

回答日時 問題 解答者 結果
2025年3月5日13:50 N3 tima_C
正解
2025年3月5日13:50 N3 tima_C
不正解
2024年9月18日21:11 N3 katsuo_temple
不正解
2024年6月8日21:44 N3 Furina
正解
2024年6月8日21:43 N3 Furina
不正解
2024年6月8日0:16 N3 bzuL
正解
2024年6月7日23:37 N3 yura
正解
2024年6月6日23:18 N3 uran
正解
2024年6月6日23:18 N3 uran
正解
2024年6月6日23:16 N3 uran
不正解
2024年6月6日23:07 N3 natsuneko
正解
2024年6月6日13:25 N3 miq_39
正解
2024年6月6日13:15 N3 Tehom
正解
2024年6月6日13:09 N3 Tehom
不正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

外心と内心

nmoon 自動ジャッジ 難易度:
12月前

7

問題文

$\angle{A} = 60^{\circ}$ なる三角形 $ABC$ の内心を $I$,外心を $O$ とする.直線 $IO$ と直線 $BC$ の交点を $D$ とし,直線 $AD$ と三角形 $ABC$ の外接円との交点を $E(\not = A)$ とすると,以下が成立した:

$$EI = 23 , IO = 18$$

このとき,線分 $AI$ の長さは,互いに素な正整数 $a,b$ を用いて$\displaystyle\frac{a}{b}$ と表されるので,$a + b$ を解答してください.

12月前

7

問題文

下図で、AB=AF=BC=CD=EB、$∠$EAB=80°、$∠$ABC=40°です。
$∠$FDEの大きさは何度ですか。

解答形式

半角数字で入力してください。
例)10

素因数分解

lemonoilemon 自動ジャッジ 難易度:
11月前

27

問題文

$12$桁の整数$111111111111$の素因数の総和を求めてください.
但し,素因数の1つとして4桁の素数が含まれます.

解答形式

整数で答えてください.

N2

orangekid 自動ジャッジ 難易度:
10月前

17

問題文

$17$で割り切れ、各桁の数の和も$17$で割り切れるような正整数を$\textbf{良い数}$と呼びます。$\textbf{相異なる}$良い数同士の差の絶対値としてあり得る最小値を求めなさい。

追記

不備が見つかったため、答えを変更しました。本当に申し訳ございません。

G1

orangekid 自動ジャッジ 難易度:
10月前

10

問題文

三角形$ABC$は$|AB|=84$、$|BC|=|CA|=72$を満たす二等辺三角形です。この三角形の垂心を$H$、頂点$A, B, C$から延びる垂線の足をそれぞれ$D,E,F$と置きます。さらに、直線$CF$上に$|DF|=|DG|$を満たす$F$でない点$G$をとります。この時、四角形$DFEG$の面積は互いに素な正整数$p,r$と平方因子を持たない数$q$を用いて$\dfrac{p\sqrt{q}}{r}$と表されるので、$p+q+r$を解答してください。ただし、$|AB|$で$AB$間の距離を表すものとします。

解答形式

半角数字で解答してください。

自作問題A1

imabc 自動ジャッジ 難易度:
12月前

9

問題文

正の実数 $x,y,z$ が $xyz=x+y+z+2$ を満たしています.このとき, $x+4y+9z$ の最小値を求めてください.

解答形式

答えを入力してください.

座王001(G1)

shoko_math 自動ジャッジ 難易度:
13月前

13

問題文

鋭角三角形 $ABC$ の垂心を $H$,外心を $O$ とし,$A$ から $BC$ に下ろした垂線の足を $D$ とします.
$OH=3,AH:HD=7:2$ であり,$\triangle{ABC}$ の外接円半径が $5$ であるとき,${OD}^2$ の値は互いに素な正の整数 $a,b$ を用いて $\dfrac{a}{b}$ と表せるので,$a+b$ の値を解答してください.

解答形式

半角数字で解答してください.

KOTAKE杯004(B)

MrKOTAKE 自動ジャッジ 難易度:
26日前

22

問題文

垂心を$H$とする鋭角三角形$ABC$があり
$AB \cdot CH=30,BC \cdot AH=28,CA \cdot BH=26$
が成立したので$AC$の長さの$2$乗を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

200G

MrKOTAKE 自動ジャッジ 難易度:
8月前

12

問題文

$AB=5, AC=7$の三角形$ABC$があり重心を$G$,内心を$I$とすると$BC //GI $であった. このとき三角形$ABC$の面積の$2$乗を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

cosを含む総和

J_Koizumi_144 自動ジャッジ 難易度:
15月前

9

問題文

以下の値を求めてください。
$$
\sum_{1\leqq m<n\leqq 9} \biggl(\cos\dfrac{m\pi}{10}+\cos\dfrac{n\pi}{10}+1\biggr)^3
$$

解答形式

答えは正整数になるので、それを半角数字で解答してください。

N4

orangekid 自動ジャッジ 難易度:
9月前

10

問題文

ある数$N$は$714$進法で$\underbrace{1818\dots1818}_{\text{1430個}}0$と表されます。$N$の素因数に含まれない最小の素数は何でしょう?

解答形式

半角数字で入力してください。

求角問題11

Kinmokusei 自動ジャッジ 難易度:
3年前

9

問題文

正方形と正三角形を組み合わせた以下の図において、青で示した角の大きさを求めてください。

解答形式

半角数字で解答してください。
解答は度数法で、単位を付けずに0以上180未満の整数として解答してください。