素直な整数

kusu394 自動ジャッジ 難易度: 数学 > 競技数学
2024年6月7日20:33 正解数: 5 / 解答数: 13 (正答率: 38.5%) ギブアップ数: 1
整数問題

全 13 件

回答日時 問題 解答者 結果
2025年5月14日17:49 素直な整数 Not_here
正解
2024年6月9日20:42 素直な整数 kureeeen
正解
2024年6月9日20:39 素直な整数 kureeeen
不正解
2024年6月9日20:32 素直な整数 kureeeen
不正解
2024年6月9日19:28 素直な整数 jjmmxx3453
不正解
2024年6月8日12:35 素直な整数 miq_39
正解
2024年6月8日12:34 素直な整数 miq_39
不正解
2024年6月8日11:16 素直な整数 miq_39
不正解
2024年6月8日7:57 素直な整数 natsuneko
正解
2024年6月8日7:53 素直な整数 natsuneko
不正解
2024年6月8日7:50 素直な整数 natsuneko
不正解
2024年6月8日7:49 素直な整数 natsuneko
不正解
2024年6月8日0:13 素直な整数 bzuL
正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

自作問題No.1

Tehom 自動ジャッジ 難易度:
19月前

10

問題文

凸四角形$ABCD$は$\angle{BAC}$$=$$12^\circ$$,$$\angle {CAD}$$=$$30^\circ$$,$$\angle{ACD}$$=$$24^\circ$$,$$AB=CD$を満たします.このとき、$\angle{ADB}$の値は互いに素な正整数$a,b$を用いて$\dfrac{a}{b}$度となるので、積$ab$の値を求めてください.

解答形式

半角数字で解答してください.

除夜コン2023予選C3

shoko_math 自動ジャッジ 難易度:
2年前

6

問題文

$5\times5$ のマス目の異なる $2$ つのマスにナイトの駒を $1$ つずつ置き,「ナイトの駒の動きに従って $2$ つの駒を同時に動かす」という操作を繰り返したところ,$2$ つの駒が同じマスに止まりました.
このとき,最初にナイトの駒を置いた $2$ マスの組み合わせとしてあり得るものの総数を求めてください.

解答形式

半角数字で解答してください.

幾何作問練習

lamenta 自動ジャッジ 難易度:
18月前

6

問題文

$\triangle ABC$において$AC$,$AB$の中点をそれぞれ$M$,$N$とし, 線分$BM$,$CN$上(端点を除く)にそれぞれ点$D$,$E$をとります. 直線$AD$,$AE$と線分$BC$の交点をそれぞれ$P$,$Q$としたとき,$$\frac{AP・PD}{PB}=MN-PC$$$$\frac{AQ・QE}{QC}=MN-QB$$が成立しました. $∠ADB=101°$,$∠BEN=62°$,$∠DCB=41°$のとき, $∠AED$の角度を度数法で解答してください.

解答形式

半角数字で入力してください.

2年前

5

問題文

円に内接する $8$ 角形 $ABCDEFGH$ が $\angle{A}=121^{\circ},\angle{B}=122^{\circ},\angle{C}=123^{\circ},\angle{D}=124^{\circ},\angle{E}=125^{\circ},\angle{F}=126^{\circ}$ を満たすとき,$\angle{G}$ の大きさを度数法で解答してください.

解答形式

半角数字で解答してください.

外心と内心

nmoon 自動ジャッジ 難易度:
21月前

9

問題文

$\angle{A} = 60^{\circ}$ なる三角形 $ABC$ の内心を $I$,外心を $O$ とする.直線 $IO$ と直線 $BC$ の交点を $D$ とし,直線 $AD$ と三角形 $ABC$ の外接円との交点を $E(\not = A)$ とすると,以下が成立した:

$$EI = 23 , IO = 18$$

このとき,線分 $AI$ の長さは,互いに素な正整数 $a,b$ を用いて$\displaystyle\frac{a}{b}$ と表されるので,$a + b$ を解答してください.

約数の個数の方程式

kusu394 自動ジャッジ 難易度:
20月前

17

問題文

自然数 $x$ に対して, $d(x)$ で $x$ の正の約数の個数を表します.
$$d(4n-1)+d(4n)=8$$ を満たす自然数 $n$ について, 小さいほうから $7$ 個の総和を求めてください.

解答形式

答えは正の整数値となるので, その整数値を半角で入力してください.

追記
=8 のところ =6 と書いてしまっていたため訂正しました
大変申し訳ありません

KMTで使ったやつ②

nmoon 自動ジャッジ 難易度:
22月前

12

問題文

三角形 $ABC$ の辺 $BC$ の中点を $M$ とし,辺 $AB,AC$ 上にそれぞれ点 $D,E$ をとると,以下が成立した:

$$\angle{DME}=90^{\circ},AD=6,DB=2,AE=7,EC=3$$

このとき,辺 $BC$ の長さの $2$ 乗を求めてください.

解答形式

非負整数で解答してください.

座王001(サドンデス2)

shoko_math 自動ジャッジ 難易度:
22月前

9

問題文

三角形 $ABC$ の辺 $AB,AC$ 上に ${BC}\parallel{DE}$ となるよう $D,E$ をとり,さらに,$D,F,G,E$ がこの順に並ぶように点 $F,G$ を線分 $DE$ 上にとる.さらに,辺 $BC$ と直線 $AF,AG$ との交点をそれぞれ $H,I$ とする.
三角形 $ADF$,四角形 $FGIH$,$AEG$ の面積がそれぞれ $3,5,8$ であるとき,三角形 $ABC$ の面積の最小値は正の整数 $a,b$ および平方因子をもたない正の整数 $c$ を用いて $a+b\sqrt{c}$ と表せるので,$a+b+c$ の値を解答してください.

解答形式

半角数字で解答してください.

21月前

7

問題文

下図で、AB=AF=BC=CD=EB、$∠$EAB=80°、$∠$ABC=40°です。
$∠$FDEの大きさは何度ですか。

解答形式

半角数字で入力してください。
例)10


問題文

三角形 $ABC$ があり,以下が成り立っています:

$$AB = 7 , \angle A + 2\angle C = 60^{ \circ } .$$

いま,辺 $BC$ 上に $\angle CAP = 3\angle BAP$ をみたす点 $P$ をとり,さらに辺 $AC$ 上に $\angle APQ = 2\angle ACB$ をみたす点 $Q$ をとったところ,$BQ = 2$ が成立しました.このとき,線分 $AC$ の長さは互いに素な正整数 $a , b$ を用いて $\dfrac{ a }{ b }$ と表せるので,$a + b$ を解答してください.

解答形式

半角数字で解答してください.

22月前

12

問題文

$\triangle{ABC}$ の辺 $AC$ に接する傍接円の中心を $I_B$,辺 $AB$ に接する傍接円の中心を $I_C$ とし,$I_BI_C$ の中点を $M$ とする.
$I_BI_C=14,BC=10$ のとき,$\triangle{MBC}$ の面積を $2$ 乗した値を解答してください.

解答形式

半角数字で解答してください

22月前

13

問題文

直線 $AT$ に点 $T$ で接する円 $\Gamma$ を描き,$A$ を通る直線 $m$と円 $\Gamma$ の交点を $A$ に近い方から順に $B,C$ とします.
また,$\angle{CAT}$ の二等分線と直線 $BT$,直線 $CT$ の交点をそれぞれ $D,E$ とします.
$BD=4,DE=8,EC=9$ となったとき,$\triangle{TBC}$ の面積を $S$ とすると,$S^2$ は互いに素な正の整数 $a,b$ を用いて $\dfrac{a}{b}$ と表されるので,$a+b$ の値を解答してください.

解答形式

半角数字で解答してください.