C

Furina 自動ジャッジ 難易度: 数学 > 競技数学
2024年6月9日21:00 正解数: 27 / 解答数: 36 (正答率: 75%) ギブアップ数: 3
この問題はコンテスト「N村杯Shortlist 001」の問題です。

全 36 件

回答日時 問題 解答者 結果
2024年6月9日21:29 C imabc
正解
2024年6月9日21:26 C natsuneko
正解
2024年6月9日21:25 C shino_P
正解
2024年6月9日21:25 C huji
正解
2024年6月9日21:21 C huji
不正解
2024年6月9日21:21 C huji
不正解
2024年6月9日21:20 C nepia_nepinepi
正解
2024年6月9日21:18 C 326_math
正解
2024年6月9日21:15 C hairtail
正解
2024年6月9日21:15 C sdzzz
正解
2024年6月9日21:14 C bzuL
正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

B

Furina 自動ジャッジ 難易度:
5月前

75

問題文

一辺の長さが $4$ の正三角形 $ABC$ について,$BC$ の中点を $M$ とし,線分 $BC$ 上に $BD=1$ なる点 $D$ をとります.$3$ 点 $ABD$ を通る円と$3$ 点 $ACM$ を通る円との交点を $X$ とするとき,$AX$ の長さの $2$ 乗を求めてください.ただし,求める値は,互いに素な正整数 $a,b$ を用いて $\dfrac{b}{a}$ と表せるので,$a+b$ の値を解答してください.

解答形式

半角数字で解答してください.

A

Furina 自動ジャッジ 難易度:
5月前

119

問題文

$AB=13, AC=15$ なる三角形 $ABC$ について,直線 $BC$ 上に $AP=12$ なる点 $P$ がただ一つ存在しました.三角形 $ABC$ の面積としてありうる値の総和を求めてください.

解答形式

半角数字で解答してください.

D

Furina 自動ジャッジ 難易度:
5月前

27

問題文

半径が $4$ の円 $\Omega$ 上に2点 $A, B$ を直径をなさないようにとり,$A, B$ における $\Omega$ の接線の交点を $C$ とします.三角形 $ABC$ の垂心を $H$ とし,3点 $A, C, H$ を通る円と $\Omega$ の交点を $D$ とすれば,$AB=CD$ が成り立ちました.このとき,三角形 $ABC$ の面積の $2$ 乗を求めてください.

追記:$D\neq A$ とします.

解答形式

半角数字で解答してください.

初等幾何サンプル問題

bzuL 自動ジャッジ 難易度:
8月前

26

問題文

三角形 $ABC$ の外接円を $\Gamma$ とします.辺 $BC$ 上に点 $X$ をとります.$B,X$ を通り,$\Gamma$ と接する円を $\Omega_1$ とし,$C,X$ を通り,$\Gamma$ と接する円を $\Omega_2$ とします.$\Omega_1$ と $\Omega_2$ は二点で交わっており,$X$ でない方の交点を $Y$ とします.直線 $XY$ は点 $A$ を通り,線分 $XC$ の垂直二等分線も点 $A$ を通りました.
$$BX = 4,CX=1$$を満たす時,三角形 $ABC$ の面積の二乗を求めてください.ただし,求める値は互いに素な二つの正整数 $a,b$ を用いて $\dfrac{a}{b}$ と表すことができるので,$a+b$ を解答してください.

解答形式

非負整数を半角で入力してください.

RKC010

Furina 自動ジャッジ 難易度:
8月前

74

問題文

素数の組 $(p,q,r)$ であって,以下の等式
$$pq-64=r^4$$
を満たすものすべてについて,$p+q+r$ の総和を求めてください.

解答形式

半角整数値で解答してください.

nCrの足し算

tsukemono 自動ジャッジ 難易度:
5月前

54

問題文

次の計算をせよ。
$$
{}_{12}{\mathrm{C}}_{1}\quad+{}_{12}{\mathrm{C}}_{2}\quad+{}_{12}{\mathrm{C}}_{3}\quad+……+{}_{12}{\mathrm{C}}_{12}\quad
$$

解答形式

半角算用数字で解答してください

A

natsuneko 自動ジャッジ 難易度:
9月前

20

問題文

三角形 $ABC$ の線分 $AB$ 上に点 $D$, 線分 $DC$ 上に点 $E$, 線分 $AC$ 上に点 $F$ を取ったところ, 以下が成立しました.
・ $\angle AED = \angle ABE = \angle EFC = 60^\circ$
・ $\angle EAC = 19^\circ$
・$DF = CF$
このとき, $\angle EBC$ の大きさは, 度数法で $N^\circ$ と表されるため, $N$ を解答してください.

解答形式

答えは正整数になるため, その値を半角数字で解答してください.

KOTAKE杯(N)

MrKOTAKE 自動ジャッジ 難易度:
3月前

25

問題文

△ABCの外心をOとする. AOを直径とする円とAB, ACの交点のうちAでないものを
それぞれD,EとするとDE=3, CD=5であり四角形BCEDは内接円を持ちました.
このとき△ABCの面積を解答してください.

解答形式

答えは正の整数値となるので, その整数値を半角で入力してください.

100G

poino 自動ジャッジ 難易度:
5月前

14

問題文

一辺の長さが $12$ の正方形 $ABCE$ の外部に点 $D$ を、三角形 $CDE$ が正三角形になるようにとります。
正方形 $ABCE$ の外接円と直線 $DE$ の交点のうち $E$ でない方を $F$ とするとき、$AF^2$ の値を解答してください。

解答形式

半角数字で入力してください。

B

natsuneko 自動ジャッジ 難易度:
9月前

30

問題文

鋭角三角形 $ABC$ について, 線分 $BC$ 上に点 $D$ を取り, 三角形 $ABD$ の垂心を $H_1$, 三角形 $ADC$ の垂心を $H_2$ とします. すると, $BD = DC = H_1 H_2 = 10$, $H_1 D : H_2 D = 2 : \sqrt{10}$ が成立しました. このとき, 三角形 $ABC$ の面積としてあり得る値の総積を解答してください.

解答形式

答えは正整数になるため, その値を半角数字で解答してください.

8月前

11

問題文

直線 $AT$ に点 $T$ で接する円 $\Gamma$ を描き,$A$ を通る直線 $m$と円 $\Gamma$ の交点を $A$ に近い方から順に $B,C$ とします.
また,$\angle{CAT}$ の二等分線と直線 $BT$,直線 $CT$ の交点をそれぞれ $D,E$ とします.
$BD=4,DE=8,EC=9$ となったとき,$\triangle{TBC}$ の面積を $S$ とすると,$S^2$ は互いに素な正の整数 $a,b$ を用いて $\dfrac{a}{b}$ と表されるので,$a+b$ の値を解答してください.

解答形式

半角数字で解答してください.

ΠMC002 E

Furina 自動ジャッジ 難易度:
13月前

125

問題文

整数 $n$ について,$\dfrac{10^n+11}{3}$ が平方数になるものは存在しますか?存在しないなら $-1$ を解答してください.存在する場合,最小の $n$ を解答してください.ただし答えは非常に大きくなる可能性があるので,$n$ を素数 $998244353$ で割ったあまりを解答してください.

解答形式

存在しないなら $-1$ を解答してください.存在する場合,最小の $n$ を解答してください.ただし答えは非常に大きくなる可能性があるので,$n$ を素数 $998244353$ で割ったあまりを解答してください.