整数 $n$ について, $n^5+n^4+32$ が素数でないことを示せ.
簡単な証明をお書き下さい.
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
$n,m \ (m\geq n)$を正整数の定数とし、多項式$f(x)$を$f(x)=x^m$で定めます。 $f(x)$を$(x-2)^n$で割った商$Q(x)$について、$Q(2)=40$が成立しました。
$(n,m)$の組としてあり得るもの全てについて、$nm$の総和を求めてください。
正整数値を半角で入力してください。
$(1)$ 集合 $S_n=\{nx\mid x^3\leqq 2x^2+5x-6\}$ に対し,整数 $k\notin\overline{S_1\cap S_2}\cup S_3$ は何個あるか. $(2)$ $3$ 桁の素数は $200$ 個未満か.
命題は真なら $1$,偽なら $0$ として,$(1),(2)$ の和を半角数字で入力してください.
以下の2次方程式 $$ x^{2}-2ax+b=0 ― (*) $$ について,自然数$n$を用いて以下の手順で係数$a,b$を定める。 $a:-n$以上$n$以下の整数が書かれたカードの中から1枚引いて書かれていた数字。 $b:-n$以上$n^{2}$以下の整数が書かれたカードの中から1枚引いて書かれていた数字。 カードを引く確率は同様に確からしいとし,できた2次方程式が実数解をもつ確率を$P(n)$とする。
$(3)$ $\lim_{n\to \infty}P(n)$を求めよ。
(4)は,自作場合の数・確率1-4につづく
2025/01/07追記 解説をアップデート,全員に対して公開に設定
分母分子の順に半角数字2つを空白区切りで回答 例)$\frac{1}{2}$と答えたいときは 2 1 と回答
この問題は(3)です。自作場合の数・確率1-2を解いてから解くことをお勧めします。
$(1)$ $4$ つの実数 $(10\pm\sqrt 2\pm 4\sqrt 3)^3+1$ の和と等しい整数の最大素因数を求めよ. $(2)$ 方程式 $(2x^2-x)(2x^2-7x+6)=7$ の実数解 $x$ に対する $x^5-\dfrac{1}{x^5}$ の値を求めよ.
$(1),(2)$ の和を半角数字で入力してください.
自然数nを用いた素数2^n+5^(n+1)は存在するか。
証明する形式。
正の実数 $a,b,c,d$ が $\Bigg\{\begin{aligned} a+\dfrac{b}{4}+\dfrac{c}{9}+\dfrac{d}{16}=25 \\ \dfrac{49}{a}+\dfrac{64}{b}+\dfrac{81}{c}+\dfrac{100}{d}=36 \end{aligned}$ の $2$ 式を満たすとき,$d$ の最小値は最大公約数が $1$ の正の整数 $p,q,r$ を用いて $\dfrac{p-\sqrt{q}}{r}$ と表されるので,$p+q+r$ の値を解答してください.
半角数字で解答してください.
$1000^{n}$ ($n$ は自然数) の正の約数の個数を $D_{n}$ とし, そのうち $10^{n}$ より大きく, $100^{n}$ より小さいものの個数を $K_{n}$ とする。 極限値 $$ \lim_{n \to \infty} \dfrac{K_{n}}{D_{n}} $$ を求めよ。
電卓を用いるなどして極限値の小数第5位までを解答してください.(0.1234567...の場合0.12345と解答する)
本問は京大作問サークル理系模試2019の第1回6番に掲載している問題です.
格子点上を,点 $P$ は $(0,2)$ から $(6,8)$ へ,点 $Q$ は $(2,0)$ から $(8,6)$ へ最短経路で進む. このとき,2 本の経路が交差しない(頂点共有もしない)組の総数を求めよ.
例)半角数字で入力してください。
${}$ 西暦2024年問題第4弾です。今回は連分数を素材にしてみました。一風変わった解き心地の問題をお楽しみください。
${}$ 解答は有理数$a$と$b$の値を2行に分けて入力してください。値が整数のときにはそのまま整数表現で、非整数のときには既約分数○/△の形で入力することにします。「$a=$」「《1行目》」などの入力は必要ありません。 (例)$a=2024$、$b=\dfrac{1}{4}$ → 《1行目》$\color{blue}{2024}$、《2行目》$\color{blue}{1/4}$
任意の正の整数 $m, n(m\leq n)$ について $\displaystyle |\sum_{i=m}^{n} a_i| \leq 2$ が成り立つような整数列 $a_i (i\geq 1)$ について,$(a_1, a_2, …, a_{100})$ としてありうる組は $N$ 個存在する.$N$ を素数 $97$ で割った余りを求めよ.
訂正: 「非負整数列」と誤りがありましたが,正しくは整数列です.申し訳ありません.
数列$a_n$を次のように定める。 $a_1=1$ $a_n=n^{a_{n-1}}$ このとき、以下の問いに答えなさい。 (1)$a_{2023}$の一の位はいくつか求めよ。 (2)$a_{2024}$の一の位はいくつか求めよ。 (3)$a_{2024}$の百の位はいくつか求めよ。
(1) ~~~ (2) ~~~ の形でお願いします。問題番号と解答、一つの小問の解答と解答の間は半角スペースを開けてください。 解答は数字のみお書きください。
$x$ の方程式 $x=1+\dfrac{3}{2+\dfrac{4}{1+\dfrac{3}{2+\dfrac{4}{1+\dfrac{3}{2+\dfrac{4}{1+\dfrac{3}{2+\dfrac{4}{x}}}}}}}}$ の実数解の $2$ 乗和は互いに素な正の整数 $a,b$ を用いて $\dfrac{a}{b}$ と表されるので,$a+b$ の値を解答してください.