簡単な幾何

Lamenta 自動ジャッジ 難易度: 数学 > 競技数学
2024年7月9日6:35 正解数: 19 / 解答数: 19 (正答率: 100%) ギブアップ数: 0
初等幾何

全 19 件

回答日時 問題 解答者 結果
2025年5月4日11:41 簡単な幾何 nanana
正解
2025年5月4日11:41 簡単な幾何 nanana
正解
2025年4月4日0:56 簡単な幾何 custard
正解
2025年3月9日17:10 簡単な幾何 Hensachi50
正解
2024年12月29日22:11 簡単な幾何 Nyarutann
正解
2024年9月4日17:08 簡単な幾何 katsuo_temple
正解
2024年9月4日9:26 簡単な幾何 MrKOTAKE
正解
2024年8月21日19:19 簡単な幾何 katsuo.tenple
正解
2024年8月15日1:01 簡単な幾何 nmoon
正解
2024年7月23日10:40 簡単な幾何 ゲスト
正解
2024年7月23日10:32 簡単な幾何 ゲスト
正解
2024年7月16日21:44 簡単な幾何 adapchi
正解
2024年7月10日14:20 簡単な幾何 amatheur
正解
2024年7月9日19:07 簡単な幾何 sdzzz
正解
2024年7月9日18:25 簡単な幾何 Weskdohn
正解
2024年7月9日9:41 簡単な幾何 MrKOTAKE
正解
2024年7月9日9:00 簡単な幾何 natsuneko
正解
2024年7月9日7:36 簡単な幾何 miq_39
正解
2024年7月9日7:26 簡単な幾何 YoneSauce
正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

今日の因数分解 第60回

Lamenta 自動ジャッジ 難易度:
10月前

20

問題文

$\:2024≧a>b>c≧1\:$なる正整数の組$\:(a,b,c)\:$であって、$x^a+x^b+x^c+1\:$が$\:(x+1)\:$を因数に持つようなものは何通りあるか解答してください。

解答形式

半角数字で解答してください。

100G

poino 自動ジャッジ 難易度:
11月前

17

問題文

一辺の長さが $12$ の正方形 $ABCE$ の外部に点 $D$ を、三角形 $CDE$ が正三角形になるようにとります。
正方形 $ABCE$ の外接円と直線 $DE$ の交点のうち $E$ でない方を $F$ とするとき、$AF^2$ の値を解答してください。

解答形式

半角数字で入力してください。

幾何作問練習2

Lamenta 自動ジャッジ 難易度:
10月前

16

問題文

$AB=AC$なる鋭角二等辺三角形$ABC$において$AB$,$BC$の中点をそれぞれ$M$,$N$とし、$MC$の垂直二等分線と$AN$の交点を$P$とします。$\triangle ABC$の面積は$15$であり、$AP:PN=4:1$であるとき、$BC^4$を解答してください。

解答形式

半角数字で解答してください。

素数

katsuo.tenple 自動ジャッジ 難易度:
8月前

33

問題文

4a²+b²+c²=d²を満たす素数の組について、
abcdの総和を求めよ。

解答形式

半角で答えて下さい。

積100万へのみちしるべ

kusu394 自動ジャッジ 難易度:
12月前

12

問題文

$3$ つの自然数を積が $1000000$ となるように選ぶ方法は何通りありますか.

解答形式

答えは正の整数値となるので, その整数値を半角で入力してください.

追記:
回答いただいた内容的に, $3$ つの自然数を区別するかどうかがわかりにくかったと思われるので追記します.
この問題では $3$ つの自然数は区別しません. すなわち, $(1,10,100000)$ と $(10,1,100000)$ のように
並び替えただけの組は同一のものとみなします.

10月前

12

問題文

正の実数$x,y,z$が$$(x+1)y^2=(x−1)z^2=\frac{3}{5}xyz$$
を満たすとき、
$$\frac{z}{y}=?$$

解答形式

例)?に入る数値を入力してください。

不採用幾何

sdzzz 自動ジャッジ 難易度:
9月前

10

問題文

三角形 $ABC$ があり,外心を $O$ とした時以下が成り立ちました.
$$
AB+AC=2BC,\quad AB\times AC=24,\quad AO=5
$$
この時,三角形 $ABC$ の内接円の半径の値を求めてください.ただし求める値は互いに素な正整数 $a,b$ を用いて $\dfrac{a}{b}$ と表せるので,$a+b$ の値を解答してください.

解答形式

半角数字で入力してください.

14月前

10

問題文

$\triangle{ABC}$ の辺 $AC$ に接する傍接円の中心を $I_B$,辺 $AB$ に接する傍接円の中心を $I_C$ とし,$I_BI_C$ の中点を $M$ とする.
$I_BI_C=14,BC=10$ のとき,$\triangle{MBC}$ の面積を $2$ 乗した値を解答してください.

解答形式

半角数字で解答してください

平方数

katsuo_temple 自動ジャッジ 難易度:
8月前

23

問題文

$n^2-n+1$が平方数となるような非負整数$n$を全て求めよ。

解答形式

$n$を小さい順に改行して半角で解答して下さい。
例)$n=3,7,9$の場合
3
7
9
と解答して下さい。

2024問題

noname 自動ジャッジ 難易度:
14月前

13

$a!+b!+5c^2=2024$となる自然数$a,b,c$の組$(a,b,c)$を全て求めよ。

**入力形式**
(a,b,c)=(1,1,1),(2,3,4),...というふうに半角で入力してください。区切る時は,を用いてください。(順不同)

14月前

12

問題文

直線 $AT$ に点 $T$ で接する円 $\Gamma$ を描き,$A$ を通る直線 $m$と円 $\Gamma$ の交点を $A$ に近い方から順に $B,C$ とします.
また,$\angle{CAT}$ の二等分線と直線 $BT$,直線 $CT$ の交点をそれぞれ $D,E$ とします.
$BD=4,DE=8,EC=9$ となったとき,$\triangle{TBC}$ の面積を $S$ とすると,$S^2$ は互いに素な正の整数 $a,b$ を用いて $\dfrac{a}{b}$ と表されるので,$a+b$ の値を解答してください.

解答形式

半角数字で解答してください.

200G

MrKOTAKE 自動ジャッジ 難易度:
9月前

12

問題文

$AB=5, AC=7$の三角形$ABC$があり重心を$G$,内心を$I$とすると$BC //GI $であった. このとき三角形$ABC$の面積の$2$乗を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.