幾何作問練習2

Lamenta 自動ジャッジ 難易度: 数学 > 競技数学
2024年7月13日9:23 正解数: 6 / 解答数: 16 (正答率: 37.5%) ギブアップ数: 0

全 16 件

回答日時 問題 解答者 結果
2024年9月14日17:15 幾何作問練習2 katsuo_temple
正解
2024年9月14日17:11 幾何作問練習2 katsuo_temple
不正解
2024年9月4日12:32 幾何作問練習2 MrKOTAKE
正解
2024年8月22日16:50 幾何作問練習2 katsuo.tenple
不正解
2024年7月23日11:04 幾何作問練習2 ゲスト
不正解
2024年7月23日11:03 幾何作問練習2 ゲスト
不正解
2024年7月23日10:59 幾何作問練習2 ゲスト
不正解
2024年7月16日21:08 幾何作問練習2 adapchi
不正解
2024年7月16日21:05 幾何作問練習2 adapchi
不正解
2024年7月16日21:01 幾何作問練習2 adapchi
不正解
2024年7月14日20:27 幾何作問練習2 bzuL
正解
2024年7月13日22:30 幾何作問練習2 Weskdohn
正解
2024年7月13日22:30 幾何作問練習2 ゲスト
正解
2024年7月13日22:29 幾何作問練習2 ゲスト
不正解
2024年7月13日9:35 幾何作問練習2 miq_39
正解
2024年7月13日9:34 幾何作問練習2 miq_39
不正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

除夜コン2023予選A2

shoko_math 自動ジャッジ 難易度:
12月前

15

問題文

実数 $x,y$ が $\bigg\{\begin{aligned}
20x+12y=20 \\
23x+31y=24
\end{aligned}$ の $2$ 式を満たすとき,$2023x+1231y$ の値を求めて下さい.

解答形式

半角数字で解答してください.

不採用幾何

sdzzz 自動ジャッジ 難易度:
5月前

10

問題文

三角形 $ABC$ があり,外心を $O$ とした時以下が成り立ちました.
$$
AB+AC=2BC,\quad AB\times AC=24,\quad AO=5
$$
この時,三角形 $ABC$ の内接円の半径の値を求めてください.ただし求める値は互いに素な正整数 $a,b$ を用いて $\dfrac{a}{b}$ と表せるので,$a+b$ の値を解答してください.

解答形式

半角数字で入力してください.

簡単な幾何

Lamenta 自動ジャッジ 難易度:
6月前

15

問題文

$∠BAC=30°$、$BC =3$である$△ABC $について、$AB$の最大値を解答してください。

解答形式

半角数字で解答してください。

幾何作問練習3改

Lamenta 自動ジャッジ 難易度:
4月前

4

問題文

$AB>AC$なる鋭角三角形$ABC$において, $C$から$AB $に下ろした垂線の足を$D$, $BC$の中点を$M$, $AM$と$CD$の交点を$E$とし, 円$BDM$と$CD$の交点のうち$D$ではない方を$F$, 円$CDM$と$AM$の交点のうち$M$ではない方を$G$とします. $CD=32$, $DM=20$, $EF=5$であるとき, $FG$の長さの$2$乗を解答してください.

解答形式

半角数字で入力してください.

6月前

13

問題文

実数a,b,c,d,e,fが次の不等式を満たしている。
$$
a^2+b^2+c^2≦1
$$$$
b^2+c^2+d^2≦1
$$$$
c^2+d^2+e^2≦1
$$$$
d^2+e^2+f^2≦1
$$このとき$$a+b+c+d+e+f$$の最大値を求めよ。

解答形式

a+b+c+d+e+fが最大となる時の(a+b+c+d+e+f)^2の値を入力してください。

今日の因数分解 第60回

Lamenta 自動ジャッジ 難易度:
6月前

19

問題文

$\:2024≧a>b>c≧1\:$なる正整数の組$\:(a,b,c)\:$であって、$x^a+x^b+x^c+1\:$が$\:(x+1)\:$を因数に持つようなものは何通りあるか解答してください。

解答形式

半角数字で解答してください。

100G

poino 自動ジャッジ 難易度:
7月前

14

問題文

一辺の長さが $12$ の正方形 $ABCE$ の外部に点 $D$ を、三角形 $CDE$ が正三角形になるようにとります。
正方形 $ABCE$ の外接円と直線 $DE$ の交点のうち $E$ でない方を $F$ とするとき、$AF^2$ の値を解答してください。

解答形式

半角数字で入力してください。

文化祭算数問題 3

sta_kun 自動ジャッジ 難易度:
3月前

13

問題文

四角形 $ABCD$ について,線分 $BD$ 上に点 $E$ を取ると,$AE=BD$ で,角 $EAD=$ 角 $AED=$ 角 $EBC=$ 角 $BCE=40°$ が成り立ちました.このとき角 $BDC$ は何度ですか?

解答形式

半角数字で解答してください.

6月前

12

問題文

正の実数$x,y,z$が$$(x+1)y^2=(x−1)z^2=\frac{3}{5}xyz$$
を満たすとき、
$$\frac{z}{y}=?$$

解答形式

例)?に入る数値を入力してください。

6月前

6

問題文

正三角形 $ ABC$ の辺 $AB,BC,CA$ 上にそれぞれ点 $P,Q,R$ があり,
$$PQ=3,\ \ \ \ QR=5,\ \ \ \ RP=7,\ \ \ \ AB=9$$ を満たしています.このとき,線分 $AQ$ の長さは互いに素な整数 $a,b$ を用いて $\displaystyle \frac{a}{b}$ と書けるので $a+b$ の値を解答してください.

解答形式

答えは正の整数値となるので, その整数値を半角で入力してください.

幾何作問練習

Lamenta 自動ジャッジ 難易度:
6月前

6

問題文

$\triangle ABC$において$AC$,$AB$の中点をそれぞれ$M$,$N$とし, 線分$BM$,$CN$上(端点を除く)にそれぞれ点$D$,$E$をとります. 直線$AD$,$AE$と線分$BC$の交点をそれぞれ$P$,$Q$としたとき,$$\frac{AP・PD}{PB}=MN-PC$$$$\frac{AQ・QE}{QC}=MN-QB$$が成立しました. $∠ADB=101°$,$∠BEN=62°$,$∠DCB=41°$のとき, $∠AED$の角度を度数法で解答してください.

解答形式

半角数字で入力してください.

複素数の2乗

amberGames-777 自動ジャッジ 難易度:
9月前

6

問題文

(1+i)^2を計算してください。

解答形式

半角で入力してください。