正角形 $ABCDEF$ について,辺 $AB,BC,DE, EF$ 上にそれぞれ点 $P,Q,R,S$ があり,
$$AP =1,\ \ BQ =2,\ \ DR =3,\ \ ES =4$$ が成り立ちます.四角形 $PQRS$ の面積が $64\sqrt3$ のとき,正六角形の一辺の長さは正の整数 $a,b$ を用いて $a + \sqrt b$ と表せるので $a+b$ の値を解答してください.
答えは正の整数値となるので,その整数値を半角で入力してください.
この問題を解いた人はこんな問題も解いています