整数問題(1)

tsukemono 自動ジャッジ 難易度: 数学 > 高校数学
2024年8月9日1:40 正解数: 9 / 解答数: 10 (正答率: 90%) ギブアップ数: 0

全 10 件

回答日時 問題 解答者 結果
2026年1月10日14:24 整数問題(1) Not_here
正解
2026年1月5日2:10 整数問題(1) kef_in_kyoto
正解
2024年8月14日18:34 整数問題(1) natsuneko
正解
2024年8月14日18:03 整数問題(1) ゲスト
正解
2024年8月14日11:18 整数問題(1) nmoon
正解
2024年8月14日11:16 整数問題(1) nmoon
不正解
2024年8月12日22:36 整数問題(1) katsuo.tenple
正解
2024年8月11日13:38 整数問題(1) Nyarutann
正解
2024年8月11日13:23 整数問題(1) iwashi
正解
2024年8月10日23:04 整数問題(1) ゲスト
正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

2024問題

noname 自動ジャッジ 難易度:
23月前

13

$a!+b!+5c^2=2024$となる自然数$a,b,c$の組$(a,b,c)$を全て求めよ。

**入力形式**
(a,b,c)=(1,1,1),(2,3,4),...というふうに半角で入力してください。区切る時は,を用いてください。(順不同)

展開図

Fuji495616 自動ジャッジ 難易度:
22月前

8

問題文

図のような展開図を組み立てできる立体の体積は何㎤ですか。ただし、図は辺の長さが等しい正三角形と正方形と正六角形を組み合わせた図形で、正方形の面積は18㎠です。

解答形式

半角数字で入力してください。
例)10

200G

Nyarutann 自動ジャッジ 難易度:
18月前

9

問題文

五角形 $ABCDE$ は $\angle{A}=90°$ で,四角形 $BCDE$ は $1$ 辺の長さが $8$ の正方形になっています.$AC$ と $BD$ の交点を $P$ とし,$AP=PQ$ となる点 $Q$ を辺 $DE$ 上に取りました.$\angle{ACQ}=45°$ であるとき,$PQ$ の長さの $2$ 乗を求めてください。

解答形式

非負整数を半角で入力してください。

ハロウィンの体育

GaLLium31 自動ジャッジ 難易度:
9月前

19

問題文

正整数 $n$ に対して $n^{10n}$ を $31$ で割ったあまりを $f(n)$ としたとき,
$$\sum_{k=1}^{12000} f(k)$$
の値を求めてください.

解答形式

半角英数字で回答してください.

変遷(ごめんなさい)

udonoisi 自動ジャッジ 難易度:
4月前

13

問題文

$\alpha^5-1=0$ を満たす複素数 $\alpha$ に対して関数 $f$ を $f(x)=\alpha x+1$ で定義したとき,
$f^{100}(1)$ としてありうる値の総和をすべて求めてください. ただし,$f^{100}(x)$ は $f$ を $100$ 回合成した関数とします.

解答形式

例)非負整数を答えてください.

追記

ごめんなさい解答形式を書いてなかったです

整数

kiriK 自動ジャッジ 難易度:
15月前

23

$自然数Xについて、Xの各位の数字を足し合わせた値をk(X)とおく。$
$4桁の自然数A,Bにおいて$$$
\begin{eqnarray}
\frac{k(A)}{k(B)}=\frac{A}{B}=n
\end{eqnarray}
$$$ (nは2以上の整数)$
$のとき、Aの取りうる値は何個あるか。$
半角数字のみで答えよ

積100万へのみちしるべ

kusu394 自動ジャッジ 難易度:
20月前

12

問題文

$3$ つの自然数を積が $1000000$ となるように選ぶ方法は何通りありますか.

解答形式

答えは正の整数値となるので, その整数値を半角で入力してください.

追記:
回答いただいた内容的に, $3$ つの自然数を区別するかどうかがわかりにくかったと思われるので追記します.
この問題では $3$ つの自然数は区別しません. すなわち, $(1,10,100000)$ と $(10,1,100000)$ のように
並び替えただけの組は同一のものとみなします.

18月前

12

問題文

正の実数$x,y,z$が$$(x+1)y^2=(x−1)z^2=\frac{3}{5}xyz$$
を満たすとき、
$$\frac{z}{y}=?$$

解答形式

例)?に入る数値を入力してください。

20月前

7

問題文

図のような、一目盛りが1cmの方眼に書いた図形があります。三角形ABCと三角形ACEは合同で、角ADF=90°です。DFは何cmですか。

解答形式

四捨五入して小数第2位まで、半角数字で答えてください。
例)$\frac{52}{3}$→17.33

OMC没問2

Kta 自動ジャッジ 難易度:
10月前

4

問題文

$\angle{A}=60^\circ,AB<AC$ なる三角形 $ABC$ について,その外心を $O$ ,垂心を $H$ とします.直線 $OH$ と直線 $AB$ との交点を $P$ としたとき,以下が成立しました.$$AP=8,AH=7$$このとき,三角形 $ABC$ の面積は互いに素な正整数 $a,c$ および平方因子を持たない正整数 $b$ を用いて $\displaystyle\frac{a\sqrt{b}}{c}$ と表せるので,$a+b+c$ を解答してください.

解答形式

半角数字で入力してください。

幾何作問練習

lamenta 自動ジャッジ 難易度:
18月前

6

問題文

$\triangle ABC$において$AC$,$AB$の中点をそれぞれ$M$,$N$とし, 線分$BM$,$CN$上(端点を除く)にそれぞれ点$D$,$E$をとります. 直線$AD$,$AE$と線分$BC$の交点をそれぞれ$P$,$Q$としたとき,$$\frac{AP・PD}{PB}=MN-PC$$$$\frac{AQ・QE}{QC}=MN-QB$$が成立しました. $∠ADB=101°$,$∠BEN=62°$,$∠DCB=41°$のとき, $∠AED$の角度を度数法で解答してください.

解答形式

半角数字で入力してください.

9月前

6

問題文

$AB=7$,$AB>AC$を満たす$\triangle ABC$について、線分$AB$上に$AC=BD$となるように点$D$をとる。直線$BC$を対称の軸として点$D$を対称移動した点を点Eとし、線分$BE,DE$を結ぶ。ここで、線分$DE$と線分$BC$は交点を持った。この点を点$M$とする。さらに、$\angle BAC$の二等分線と線分$BC$の交点を点$F$としたとき、$\angle AFB=135°$であった。$CM+DM=3$のとき、凹五角形$ABEMC$の面積を求めよ。

解答形式

単位を付けずに半角数字で解答してください。