整数問題(1)

tsukemono 自動ジャッジ 難易度: 数学 > 高校数学
2024年8月9日1:40 正解数: 7 / 解答数: 8 (正答率: 87.5%) ギブアップ数: 0

全 8 件

回答日時 問題 解答者 結果
2024年8月14日18:34 整数問題(1) natsuneko
正解
2024年8月14日18:03 整数問題(1) ゲスト
正解
2024年8月14日11:18 整数問題(1) nmoon
正解
2024年8月14日11:16 整数問題(1) nmoon
不正解
2024年8月12日22:36 整数問題(1) katsuo.tenple
正解
2024年8月11日13:38 整数問題(1) Nyarutann
正解
2024年8月11日13:23 整数問題(1) iwashi
正解
2024年8月10日23:04 整数問題(1) ゲスト
正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

展開図

Fuji495616 自動ジャッジ 難易度:
8月前

6

問題文

図のような展開図を組み立てできる立体の体積は何㎤ですか。ただし、図は辺の長さが等しい正三角形と正方形と正六角形を組み合わせた図形で、正方形の面積は18㎠です。

解答形式

半角数字で入力してください。
例)10

9月前

6

問題文

下図で、 四角形ABCDは平行四辺形です。四角形ABCDの面積が50㎠、五角形GHIJKの面積が5㎠のとき、十角形DGEHFIBJCK(青い部分)の面積は何㎠ですか。ただし、図は正確とは限りません。

解答形式

半角数字で入力してください。
例)10

2024問題

noname 自動ジャッジ 難易度:
9月前

11

$a!+b!+5c^2=2024$となる自然数$a,b,c$の組$(a,b,c)$を全て求めよ。

**入力形式**
(a,b,c)=(1,1,1),(2,3,4),...というふうに半角で入力してください。区切る時は,を用いてください。(順不同)

整数

kiriK 自動ジャッジ 難易度:
30日前

22

$4桁の数Xについて、Xの各位の数字を1桁ずつ足し合わせた和をk(X)とおく。$
$4桁の数A,Bにおいて$$$
\begin{eqnarray}
\frac{k(A)}{k(B)}=\frac{A}{B}=n
\end{eqnarray}
$$$ (nは2以上の整数)$
$のとき、Aの取りうる値は何個あるか。$
半角数字のみで答えよ

展開図3

Fuji495616 自動ジャッジ 難易度:
7月前

5

問題文

図1は、あるへこみのない立体の展開図です。図1は合同な正方形2個、合同な菱型4個、合同な台形8個からなり、これを組み立てると2個の正方形1組がたがいに向かい合い、2個の台形4組がたがいに向かい合い、2個の菱形2組がたがいに向かい合います。また、図2は図1に使われている3種類の図形を、1目盛りが1cmの方眼用紙に描いたものです。図1を組み立ててできる立体の体積は何cm$^3$ですか。
              図1

              図2

解答形式

四捨五入して整数で答えてください。
例)$\frac{17}{4}cm^3$→4


問題文

4桁の自然数Nの千の位、百の位、十の位、一の位の数字をそれぞれa,b,c,dとする。次の条件を満たすNは何通りあるか、それぞれ答えなさい。
問1 a<b<c<d 問2 a>b≧c,5<d 問3 a>b,b<c<d

解答形式

下記のように解答お願いします。問題番号と〜にあたる部分には半角スペース1個分空けてください。
問1 〜通り
問2 〜通り
問3 〜通り

確率

Ultimate 自動ジャッジ 難易度:
6月前

8

問題文

5進数で表された[2024]を2進数で表せ。

解答形式

数字のみでOK

積100万へのみちしるべ

kusu394 自動ジャッジ 難易度:
6月前

11

問題文

$3$ つの自然数を積が $1000000$ となるように選ぶ方法は何通りありますか.

解答形式

答えは正の整数値となるので, その整数値を半角で入力してください.

追記:
回答いただいた内容的に, $3$ つの自然数を区別するかどうかがわかりにくかったと思われるので追記します.
この問題では $3$ つの自然数は区別しません. すなわち, $(1,10,100000)$ と $(10,1,100000)$ のように
並び替えただけの組は同一のものとみなします.

2024③

seven_sevens 自動ジャッジ 難易度:
13月前

8

問題文

数列$a_n$を次のように定める。
$a_1=1$
$a_n=n^{a_{n-1}}$
このとき、以下の問いに答えなさい。
(1)$a_{2023}$の一の位はいくつか求めよ。
(2)$a_{2024}$の一の位はいくつか求めよ。
(3)$a_{2024}$の百の位はいくつか求めよ。

解答形式

(1) ~~~
(2) ~~~
の形でお願いします。問題番号と解答、一つの小問の解答と解答の間は半角スペースを開けてください。
解答は数字のみお書きください。

極限の問題

akaddd 自動ジャッジ 難易度:
16月前

10

以下の極限値を求めよ。

$$\lim_{n\rightarrow{\infty}}\biggr(\lim_{x\rightarrow{0}}\prod_{k=1}^n\frac{kx}{\sin(k+1)x}\biggr)
$$

有理化問題

noname 自動ジャッジ 難易度:
9月前

14

解答が間違っていたため修正いたしました。ご迷惑をおかけしてしまい申し訳ございません。

$\frac{1}{\sqrt{1}+\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{5}+\sqrt{6}+\sqrt{8}+\sqrt{10}}$
を有理化し、その分母を答えよ。

解答形式

既約分数にしてその分母を整数値でお答えください。

200G

Nyarutann 自動ジャッジ 難易度:
4月前

9

問題文

五角形 $ABCDE$ は $\angle{A}=90°$ で,四角形 $BCDE$ は $1$ 辺の長さが $8$ の正方形になっています.$AC$ と $BD$ の交点を $P$ とし,$AP=PQ$ となる点 $Q$ を辺 $DE$ 上に取りました.$\angle{ACQ}=45°$ であるとき,$PQ$ の長さの $2$ 乗を求めてください。

解答形式

非負整数を半角で入力してください。