OMCっぽい問題2(N分野・多分易し目300点)

Shota_1110 自動ジャッジ 難易度: 数学 > 競技数学
2024年10月5日23:57 正解数: 12 / 解答数: 20 (正答率: 60%) ギブアップ数: 2

全 20 件

回答日時 問題 解答者 結果
2024年11月8日15:30 OMCっぽい問題2(N分野・多分易し目300点) natsuneko
正解
2024年11月8日15:25 OMCっぽい問題2(N分野・多分易し目300点) natsuneko
不正解
2024年10月19日12:14 OMCっぽい問題2(N分野・多分易し目300点) katsuo_temple
正解
2024年10月11日23:54 OMCっぽい問題2(N分野・多分易し目300点) 326_math
不正解
2024年10月11日23:53 OMCっぽい問題2(N分野・多分易し目300点) 326_math
不正解
2024年10月11日17:16 OMCっぽい問題2(N分野・多分易し目300点) YoneSauce
正解
2024年10月10日18:06 OMCっぽい問題2(N分野・多分易し目300点) zanguma
正解
2024年10月9日18:37 OMCっぽい問題2(N分野・多分易し目300点) Nero
正解
2024年10月9日18:33 OMCっぽい問題2(N分野・多分易し目300点) Nero
不正解
2024年10月9日14:07 OMCっぽい問題2(N分野・多分易し目300点) aaabbb
正解
2024年10月9日14:05 OMCっぽい問題2(N分野・多分易し目300点) aaabbb
不正解
2024年10月6日19:01 OMCっぽい問題2(N分野・多分易し目300点) Weskdohn
正解
2024年10月6日12:42 OMCっぽい問題2(N分野・多分易し目300点) ゲスト
正解
2024年10月6日10:53 OMCっぽい問題2(N分野・多分易し目300点) false_tto
正解
2024年10月6日9:06 OMCっぽい問題2(N分野・多分易し目300点) ゲスト
正解
2024年10月6日9:05 OMCっぽい問題2(N分野・多分易し目300点) ゲスト
不正解
2024年10月6日9:00 OMCっぽい問題2(N分野・多分易し目300点) ゲスト
不正解
2024年10月6日0:58 OMCっぽい問題2(N分野・多分易し目300点) Tehom
正解
2024年10月6日0:46 OMCっぽい問題2(N分野・多分易し目300点) Tehom
不正解
2024年10月6日0:11 OMCっぽい問題2(N分野・多分易し目300点) Firmiana
正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

今日の因数分解 第60回

Lamenta 自動ジャッジ 難易度:
4月前

19

問題文

$\:2024≧a>b>c≧1\:$なる正整数の組$\:(a,b,c)\:$であって、$x^a+x^b+x^c+1\:$が$\:(x+1)\:$を因数に持つようなものは何通りあるか解答してください。

解答形式

半角数字で解答してください。

2月前

15

問題文

$1$ 以上 $12$ 以下の整数からなる集合を $U$ とし,空でない $U$ の部分集合 $S, T$ を
$$S \cup T = U,S \cap T = \phi$$となるよう定めたところ,$S$ の元の和と $T$ の元の平方和が等しくなりました.このような集合の組 $(S, T)$ すべてに対する「$S$ の元の和」の総和を解答して下さい.


たとえば,
$$S = \{1, 2, ..., 9\},T = \{10, 11, 12\}$$であるなら,$S$ の元の和は $1 + 2 + \cdots + 9 = 45$ と計算され,$T$ の元の平方和は $10^2 + 11^2 + 12^2 = 365$ と計算されます.

解答形式

半角英数にし、答えとなる正整数値を入力し解答して下さい.

OMCB020(E)の改題案だったヤツ

Shota_1110 自動ジャッジ 難易度:
2月前

22

問題文

正整数 $x, y$ が
$$x^{11}y^{10} = 2^{(2^{1110})} \cdot 3^{(3^{1110})} \cdot 5^{(5^{1110})} \cdot 37^{(37^{1110})} \cdot 1110$$
をみたすとき,$x$ のとり得る最小の値を求めて下さい.

解答形式

半角英数にし、答えとなる正整数値を入力し解答して下さい.

余談

OMCB020-E(URL : https://onlinemathcontest.com/contests/omcb020/tasks/9732)
のアレンジ,というよりかはこのコンテストのTester期間中に運営さんに改題を提案したときの問題です.
4bにそぐわないとしてOMCへの使用には至りませんでしたが,せっかくなのでよければ解いてみてください.

簡単な幾何

Lamenta 自動ジャッジ 難易度:
4月前

14

問題文

$∠BAC=30°$、$BC =3$である$△ABC $について、$AB$の最大値を解答してください。

解答形式

半角数字で解答してください。

素因数分解

lemonoilemon 自動ジャッジ 難易度:
6月前

25

問題文

$12$桁の整数$111111111111$の素因数の総和を求めてください.
但し,素因数の1つとして4桁の素数が含まれます.

解答形式

整数で答えてください.

N3

orangekid 自動ジャッジ 難易度:
5月前

12

問題文

整数$x, y, z$は$0<x<28,0<y, 0\leq z<20$ と $37x-13y=2z$ を共に満たします。このような整数の組$(x,y,z)$はいくつあるでしょう?

解答形式

半角数字で入力してください。

文化祭算数問題 3

sta_kun 自動ジャッジ 難易度:
57日前

13

問題文

四角形 $ABCD$ について,線分 $BD$ 上に点 $E$ を取ると,$AE=BD$ で,角 $EAD=$ 角 $AED=$ 角 $EBC=$ 角 $BCE=40°$ が成り立ちました.このとき角 $BDC$ は何度ですか?

解答形式

半角数字で解答してください.

N1

orangekid 自動ジャッジ 難易度:
8月前

14

問題文

次の方程式の整数解を求めよ。
ただし、$p, q$は非負整数である。
$$
x^2-15x+3^p-2^q=0
$$

解答形式

半角数字で小さい順につなげて入力してください。
例 $x=-4,-1,0,3,4$の時 -4-1034

N2

orangekid 自動ジャッジ 難易度:
5月前

17

問題文

$17$で割り切れ、各桁の数の和も$17$で割り切れるような正整数を$\textbf{良い数}$と呼びます。$\textbf{相異なる}$良い数同士の差の絶対値としてあり得る最小値を求めなさい。

追記

不備が見つかったため、答えを変更しました。本当に申し訳ございません。

文化祭算数問題 2

sta_kun 自動ジャッジ 難易度:
57日前

10

問題文

四角形 $ABCD$ について,角 $DBC=20°$,角 $BDC=90°$,角 $ADB=40°$,$AD:BC=1:2$ が成り立ちました.このとき角 $ABD$ は何度ですか?

解答形式

半角数字で解答して下さい.


問題文

正整数 $3$ つの集合 $S$ であって,以下を同時にみたすものは全部でいくつありますか?

  • $S$ に属する $3$ 数を十進数表記したときすべて $3$ 桁であり,それぞれの桁に $1, 2, ..., 9$ がすべて $1$ 回ずつ現れる.
  • $S$ から相異なる $2$ 数 $a, b$ を選ぶ方法であって,$a + b = 1110$ をみたすものが存在する.

解答形式

半角英数にし,答えとなる非負整数値を入力し解答して下さい.

幾何作問練習

Lamenta 自動ジャッジ 難易度:
4月前

6

問題文

$\triangle ABC$において$AC$,$AB$の中点をそれぞれ$M$,$N$とし, 線分$BM$,$CN$上(端点を除く)にそれぞれ点$D$,$E$をとります. 直線$AD$,$AE$と線分$BC$の交点をそれぞれ$P$,$Q$としたとき,$$\frac{AP・PD}{PB}=MN-PC$$$$\frac{AQ・QE}{QC}=MN-QB$$が成立しました. $∠ADB=101°$,$∠BEN=62°$,$∠DCB=41°$のとき, $∠AED$の角度を度数法で解答してください.

解答形式

半角数字で入力してください.