確率

kiriK 採点者ジャッジ 難易度: 数学 > 高校数学
2024年10月22日20:00 正解数: 2 / 解答数: 3 (正答率: 66.7%) ギブアップ不可
この問題はコンテスト「KP杯2nd 作問ミスがあったため問題を一部変えました」の問題です。

全 3 件

回答日時 問題 解答者 結果
2024年10月22日21:27 確率 natsuneko
正解
2024年10月20日21:19 確率 natsuneko
正解
2024年10月10日21:41 確率 ゲスト
不正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

5月前

5

問題文

下の図において, $\triangle ABC$ と $\triangle BDE$ は二等辺三角形です. さらに,
$$\angle ABC=\angle BDE=90^\circ,\hspace{1pc} \angle EBC=60^\circ\\
BC=32, \hspace{1pc} DB=6\sqrt{2}$$ が成立します. 線分 $AE$ の中点を $M$ とするとき, 線分 $DM$ の長さを求めてください.
ただし, $E$ は $\triangle ABC$ の内側にあります.

解答形式

答えは正の整数値となるので, その整数値を半角で入力してください.

角度の問題

iwasaki 自動ジャッジ 難易度:
4月前

1

三角形ABCとDEFにおいて
AB=DF,BC=DE,∠B=63°,∠C=30°,∠D=171°
であるとき,∠Eの角度を求めてください。

解答形式

非負整数を半角で入力してください。

No.05 連立方程式と不等式

Prime-Quest 自動ジャッジ 難易度:
9月前

2

問題

次の実数 $a,b,c$ に対し,つねに $|ax+by|\leqq |c|$ となる実数 $x,y$ の和の値域幅を求めよ.

  • $p,q$ の連立方程式 $ap+bq=c,\ (b-c)p+(c+a)q=a+7b$ は解を複数個もつ.

解答形式

半角数字で入力してください.


問題文

三角形 $ABC$ があり,以下が成り立っています:

$$AB = 7 , \angle A + 2\angle C = 60^{ \circ } .$$

いま,辺 $BC$ 上に $\angle CAP = 3\angle BAP$ をみたす点 $P$ をとり,さらに辺 $AC$ 上に $\angle APQ = 2\angle ACB$ をみたす点 $Q$ をとったところ,$BQ = 2$ が成立しました.このとき,線分 $AC$ の長さは互いに素な正整数 $a , b$ を用いて $\dfrac{ a }{ b }$ と表せるので,$a + b$ を解答してください.

解答形式

半角数字で解答してください.

素数と方程式

noname 自動ジャッジ 難易度:
7月前

2

問題文

$p,q$を素数、$n$を整数とします。
$$
p^{4}+2q^{2}-2^{n}=635
$$
を満たす$p,q,n$の組$(p,q,n)$を全て求めてください。

解答形式

$p+q+n$の値の総和を半角で解答してください。

根号と絶対値と指数・対数の計算

y 自動ジャッジ 難易度:
5月前

2

$$
|2^{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{{1024}}}}}}}}}}}-log_21024|
$$

展開図3

Fuji495616 自動ジャッジ 難易度:
6月前

5

問題文

図1は、あるへこみのない立体の展開図です。図1は合同な正方形2個、合同な菱型4個、合同な台形8個からなり、これを組み立てると2個の正方形1組がたがいに向かい合い、2個の台形4組がたがいに向かい合い、2個の菱形2組がたがいに向かい合います。また、図2は図1に使われている3種類の図形を、1目盛りが1cmの方眼用紙に描いたものです。図1を組み立ててできる立体の体積は何cm$^3$ですか。
              図1

              図2

解答形式

四捨五入して整数で答えてください。
例)$\frac{17}{4}cm^3$→4


問題文

4桁の自然数Nの千の位、百の位、十の位、一の位の数字をそれぞれa,b,c,dとする。次の条件を満たすNは何通りあるか、それぞれ答えなさい。
問1 a<b<c<d 問2 a>b≧c,5<d 問3 a>b,b<c<d

解答形式

下記のように解答お願いします。問題番号と〜にあたる部分には半角スペース1個分空けてください。
問1 〜通り
問2 〜通り
問3 〜通り

No.01 展開と因数分解

Prime-Quest 自動ジャッジ 難易度:
9月前

4

問題

$(1)$ $4$ つの実数 $(10\pm\sqrt 2\pm 4\sqrt 3)^3+1$ の和と等しい整数の最大素因数を求めよ.
$(2)$ 方程式 $(2x^2-x)(2x^2-7x+6)=7$ の実数解 $x$ に対する $x^5-\dfrac{1}{x^5}$ の値を求めよ.

解答形式

$(1),(2)$ の和を半角数字で入力してください.

自作3

soka 自動ジャッジ 難易度:
6月前

3

問題

$n=1,2,3...、k=0,1,2...n-1$とします。

また、不等式$$a_1<a_2<...<a_n≦n$$

を$A_0$とし、$A_0$の$n-1$個の$<$のうち$k$個が$≦$に置き換わったものの一つを$A_k$とします。

ここで、$A_k$をみたす正整数$(a_1,a_2...a_n)$の組の総数を$N_k$とするとき、$N_0+N_1+...+N_{n-1}$を$n$を用いて表してください。

解答形式

$C$(コンビネーション記号)を用いて、$aCb$の形で表すことができるので、$a,b$の間に半角スペースを入力して、$a$ $b$を半角英数字で入力してください。
追記:ただし、$b$は$2$つの値が考えられるので、小さい方を入力してください。
例)$nC2→n$ $2,2nCn→2n$ $n$

※初めの解答では指定がなく間違い判定になった方がいたので修正させていただきました、、

自作問題1

iwashi 自動ジャッジ 難易度:
7月前

2

問題文

$n$を自然数とする。$\displaystyle \sum_{k=1}^{n} n^k$を$8$で割った余りを$a_{n}$、 $\displaystyle S_{n}=\sum_{k=1}^{n}a_{k}$とする。すべての$n$に対して$a_{n+l}=a_{n}$が成り立つような自然数$l$の最小値と$S_{m+2025}=2S_{m}$が成り立つような自然数$m$の最大値を求めよ。

解答形式

1行目に$l$を,2行目に$m$を半角英数字で解答してください。例えば$l=123,m=456$とする場合

123
456

としてください。

指数・対数(4)

y 自動ジャッジ 難易度:
7月前

3

$$
(\frac{1}{\sqrt{2}})^{mlog_{2}8^{log_{3}27}}=1024のmの値を答えて下さい。\\このとき、解より小さい値で最も小さい整数を答えて下さい。
$$