P5

Lamenta 自動ジャッジ 難易度: 数学 > 競技数学
2024年10月26日21:00 正解数: 7 / 解答数: 9 (正答率: 77.8%) ギブアップ数: 3
この問題はコンテスト「LGC」の問題です。

全 9 件

回答日時 問題 解答者 結果
2024年10月27日1:23 P5 nmoon
正解
2024年10月27日0:39 P5 BAKATAN
不正解
2024年10月26日23:00 P5 Weskdohn
正解
2024年10月26日22:43 P5 natsuneko
正解
2024年10月26日22:03 P5 Furina
正解
2024年10月26日22:00 P5 Asibara
正解
2024年10月26日22:00 P5 Asibara
不正解
2024年10月26日21:47 P5 hairtail
正解
2024年10月26日21:27 P5 pomodor_ap
正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

座王001(G2)

shoko_math 自動ジャッジ 難易度:
15月前

13

問題文

$\triangle{ABC}$ の外接円を $O_1$ とし,辺 $CA$,辺 $CB$,円 $O_1$ に接する円を $O_2$ とします.また,円 $O_2$ と辺 $CA$ ,辺 $CB$,円 $O_1$ の接点をそれぞれ $P,Q,T$ とし,直線 $TP$ と円 $O_1$ の交点を ${R}(\ne{T})$ とし,直線 $TQ$ と円 $O_1$ の交点を $S(\ne{T})とします.$
$TA=23,TB=35,TC=57$ のとき,(四角形 $ARCS$ の面積):(四角形 $BSCR$ の面積)は互いに素な正の整数 $a,b$ を用いて $a:b$ と表されるので,$a+b$ の値を解答してください.

解答形式

半角数字で解答してください.

P3

Lamenta 自動ジャッジ 難易度:
7月前

19

問題文

$\angle B=90^{\circ}$なる直角三角形$ABC$において,$AC$の中点を$M$とすると,$BC$上(端点を除く)に$AB=MP=MQ$なる異なる$2$点$P$,$Q$をとることができ,$B$,$P$,$Q$,$C$はこの順にあった.また,直線$MQ$について$B$と対称な点を$X$とすると,$AX=11$,$PX=18$を満たした.このとき,$BC$の長さの$2$乗を求めよ.

解答形式

求める値は互いに素な正整数$a,b$を用いて$\dfrac{a}{b}$と表せるので,$a+b$を半角数字で解答してください.

2年前

10

問題文

図の条件の下で,線分 $AB$ の長さを求めてください.
※orthocenter:垂心,circumcenter:外心

解答形式

$AB^2$ の値は互いに素な正整数 $a,b$ を用いて $\dfrac{a}{b}$ と表せるので,$a+b$ の値を解答してください.

KOTAKE杯005(E)

MrKOTAKE 自動ジャッジ 難易度:
21日前

12

問題文

$AB<AC$ なる鋭角三角形 $ABC$ について垂心を $H$ とし,三角形 $ABC$ の外接円と直線 $BH$ ,直線 $CH$ の交点をそれぞれ $(D\neq B),E(\neq C)$ とする.半直線 $DE$ と直線$BC$の交点を$P$とすると,三角形 $AEH$ の外接円は直線 $HP$ に点 $H$ で接し, $PH=3,AE=4$ であった.このとき線分 $AB$ の長さの $2$ 乗は互いに素な正の整数 $a, b$ を用いて $\dfrac{a}{b}$ と表せるので,$a+b$ を解答せよ.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.
Writer: MrKOTAKE

2年前

10

問題文

図の条件の下で、赤で示した線分の長さ $x$ を求めてください。

解答形式

$x^2$ の値を半角数字で解答してください。

KOTAKE杯005(F)

MrKOTAKE 自動ジャッジ 難易度:
21日前

18

問題文

$AB<AC$ なる三角形 $ABC$ について,$AB=AD$ なる線分 $BC$ (端点を含まない) 上の点を $D$,円 $ABD$ と線分 $AC$ の交点を $E(\neq A)$,円 $BEC$ と線分 $AD$ の交点を $F$ とする.
直線 $BF$ と円 $FDC$ が再び交わる点を $P$ とすると,$AP\parallel BC$ かつ $PE=5, BC=12$ が成立したとき,$AB$ の長さの二乗は互いに素な正の整数 $a, b$ を用いて $\dfrac{a}{b}$ と表せるので,$a+b$ を解答せよ.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.
Writer: pomodor_ap

2年前

11

問題文

図の条件の下で、線分 $CG$ の長さを求めてください。
※図中の各線分の長さの比は正確とは限りません。

解答形式

互いに素な正整数 $a,b$ によって $CG=\dfrac{a}{b}$ と表せるので、$a+b$ の値を半角数字で解答してください。

KOTAKE杯005(D)

MrKOTAKE 自動ジャッジ 難易度:
21日前

15

問題文

$AB=5, AC=8, \angle A=60^{\circ}$ なる三角形 $ABC$ について,外接円の $A$ を通らない弧 $BC$ の中点を $M$ とする.相異なる $4$ 点 $P,Q,B,C$ がこの順で同一直線上に並び,$\angle APB:\angle MPB=\angle AQB:\angle MQB=3:1$ が成立した.線分 $PQ$ の長さは互いに素な正の整数 $a, b$ を用いて $\dfrac{a}{b}$ と表せるので,$a+b$ を解答せよ.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.
Writer: pomodor_ap

2年前

13

問題文

図の条件の下で,半円の直径 $x$ を求めてください.

解答形式

$x^2$ の値を半角数字で解答してください.

2年前

10

問題文

一辺が $8$ である正三角形 $ABC$ の内接円と $AB,BC,CA$ との接点を $K,L,M$ とします。$\triangle ABC$ の外接円上の点 $P$ について、$PK^2+PL^2+PM^2$ の値を求めてください。

解答形式

半角数字で解答してください。

P4

Lamenta 自動ジャッジ 難易度:
7月前

23

問題文

$\triangle ABC$において,内心を$I$,重心を$G$とし,$I$ から$BC$,$CA$,$AB$に下ろした垂線の足をそれぞれ$D$,$E$,$F$とすると,$G$は$EF$上にあり,$IG=1$,$BD:DC=3:5$を満たした.このとき,$\triangle ABC$の周長の$2$乗を求めよ.

解答形式

求める値は互いに素な正整数$a,b$を用いて$\dfrac{a}{b}$と表されるので,$a+b$を半角数字で解答してください.

求面積問題30

Kinmokusei 自動ジャッジ 難易度:
3年前

11

問題文

正三角形・長方形・半円を組み合わせた以下の図形について、図中緑の線分の長さが6のとき、図形全体の面積を求めてください。

解答形式

半角数字で解答してください。