P5

Lamenta 自動ジャッジ 難易度: 数学 > 競技数学
2024年10月26日21:00 正解数: 7 / 解答数: 9 (正答率: 77.8%) ギブアップ数: 3
この問題はコンテスト「LGC」の問題です。

全 9 件

回答日時 問題 解答者 結果
2024年10月27日1:23 P5 nmoon
正解
2024年10月27日0:39 P5 BAKATAN
不正解
2024年10月26日23:00 P5 Weskdohn
正解
2024年10月26日22:43 P5 natsuneko
正解
2024年10月26日22:03 P5 Furina
正解
2024年10月26日22:00 P5 Asibara
正解
2024年10月26日22:00 P5 Asibara
不正解
2024年10月26日21:47 P5 hairtail
正解
2024年10月26日21:27 P5 pomodor_ap
正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

P3

Lamenta 自動ジャッジ 難易度:
5日前

18

問題文

$\angle B=90^{\circ}$なる直角三角形$ABC$において,$AC$の中点を$M$とすると,$BC$上(端点を除く)に$AB=MP=MQ$なる異なる$2$点$P$,$Q$をとることができ,$B$,$P$,$Q$,$C$はこの順にあった.また,$B$を直線$MQ$について対称移動した点を$X$とすると,$AX=11$,$PX=18$を満たした.このとき,$BC$の長さの$2$乗を求めよ.

解答形式

求める値は互いに素な正整数$a,b$を用いて$\frac{a}{b}$と表せるので,$a+b$を半角数字で解答してください.

P4

Lamenta 自動ジャッジ 難易度:
5日前

22

問題文

$\triangle ABC$において,内心を$I$,重心を$G$とし,$I$ から$BC$,$CA$,$AB$に下ろした垂線の足をそれぞれ$D$,$E$,$F$とすると,$G$は$EF$上にあり,$IG=1$,$BD:DC=3:5$を満たした.このとき,$\triangle ABC$の周長の$2$乗を求めよ.

解答形式

求める値は互いに素な正整数$a,b$を用いて$\frac{a}{b}$と表されるので,$a+b$を半角数字で解答してください.

300G

eq_K 自動ジャッジ 難易度:
4月前

7

問題文

$4$ 点 $A,B,C,D$ は同一円周上にあり,その内部(辺上を含まない)に点 $P$ をとります.
また,線分 $AP,BP,CP,DP$ の垂直二等分線をそれぞれ $a,b,c,d$ とします.
$a,b$ の交点を $E$,$b,c$ の交点を $F$,$c,d$ の交点を $G$,$d,a$ の交点を $H$ とすると,$4$ 点 $E,F,G,H$ は同一円周上にあり,四角形 $EFGH$ の二本の対角線は $P$ で交わりました.
 そして,以下が成立しました:
$$HP=5,\quad HE=11,\quad EF=16$$
 このとき,$HG$ の長さの二乗は互いに素な正整数 $a,b$ を用いて $\dfrac{b}{a}$ と表せるので,$a+b$ を解答してください.

解答形式

非負整数を半角で入力してください.

座王001(G2)

shoko_math 自動ジャッジ 難易度:
7月前

10

問題文

$\triangle{ABC}$ の外接円を $O_1$ とし,辺 $CA$,辺 $CB$,円 $O_1$ に接する円を $O_2$ とします.また,円 $O_2$ と辺 $CA$ ,辺 $CB$,円 $O_1$ の接点をそれぞれ $P,Q,T$ とし,直線 $TP$ と円 $O_1$ の交点を ${R}(\ne{T})$ とし,直線 $TQ$ と円 $O_1$ の交点を $S(\ne{T})とします.$
$TA=23,TB=35,TC=57$ のとき,(四角形 $ARCS$ の面積):(四角形 $BSCR$ の面積)は互いに素な正の整数 $a,b$ を用いて $a:b$ と表されるので,$a+b$ の値を解答してください.

解答形式

半角数字で解答してください.

400G

poino 自動ジャッジ 難易度:
4月前

9

問題文

$AB=13,BC=14,CA=15$ を満たす三角形 $ABC$ において、外心を $O$、辺 $AB$ の中点を $M$、辺 $AC$ の中点を $N$、$A$ から辺 $BC$ に下ろした垂線の足を $D$ とします。また、円 $DMN$ と $AD$ の交点を $X$、$MN$ について $X$ と対称な点を $Y$ とします。このとき四角形 $BCOY$ の面積を求めてください。

解答形式

半角数字で入力してください。

Three polygons

nepia_nepinepi 自動ジャッジ 難易度:
8月前

10

問題文

3/3 23:49 問題を一部変更しました.
下図で、$ABCD$は一辺$6$の正方形,$ADEFGH$は正六角形, $IBC$は正三角形です.$AI$と$BF$の公点を$J$としたときの三角形$FJI$の面積を求めてください.

解答形式

半角の正整数で答えてください.

算数オリンピック風味の幾何

326_math 自動ジャッジ 難易度:
3月前

10

問題文

四角形 $ABCD$ があり,以下を満たしています:

$$
\angle B + \angle C = 120^{\circ} , \angle D = \angle B + 30^{\circ} , AB = CD = 7 , BC = 13 .
$$

このとき,辺 $AD$ の長さの $2$ 乗を解答してください.

解答形式

半角数字で解答してください.

座王001(N1)

shoko_math 自動ジャッジ 難易度:
7月前

10

問題文

以下の[条件]を満たす $3$ 桁の正の整数(つまり,$100$ 以上 $999$ 以下の正の整数)の組 $(A,B)$ すべてに対し,$A+B$ の値の総和を解答してください.

[条件] $A^2$ の下 $3$ 桁は $B$ であり,$B^2$ の下 $3$ 桁は $A$ である.

解答形式

半角数字で解答してください.

求面積問題19

Kinmokusei 自動ジャッジ 難易度:
3年前

4

問題文

2つの三角形ABCとQCRが図のように配置されています。各点が画像に記した条件を満たすとき、赤い三角形の面積を求めてください。

解答形式

半角数字で解答してください。

接線の交点

hkd585 自動ジャッジ 難易度:
2年前

6

問題文

$\triangle ABC$の辺$AB$上に点$D$が,辺$AC$上に点$E$がそれぞれある.また,辺$BC$上に2点$P,Q$があり,4点$B,P,Q,C$はこの順に並んでいる.
$\triangle BDP$の外接円の$B$における接線と,$\triangle CEQ$の外接円の$C$における接線とが点$F$で交わっている.
$AD=2,DB=4,AE=5,EC=3,BP=1,PQ=10,QC=1$のとき,$AF=\dfrac{a\sqrt{b}}{c}$である.ただし,$a,b,c$はいずれも正の整数であり,$a,c$は互いに素である.また,根号の内部は十分簡単になっている.
$a+b+c$の値を求めよ.

解答形式

半角数字で解答してください.

幾何問題24/1/8

326_math 自動ジャッジ 難易度:
9月前

8

問題文

$AB=5,AC=9$ なる三角形 $ABC$ があり,その外接円を $\Gamma$ とします.辺 $BC$ の中点を $D$ とすると,$B$ における $\Gamma$ の接線と半直線 $DA$ が点 $E$ で交わりました.また,辺 $AC$ 上の点 $F$ が $\angle CDF=\angle BEA$ をみたしています.$DF=\dfrac{10}{3}$ のとき,線分 $AE$ の長さは互いに素な正整数 $a,b$ を用いて $\dfrac{a}{b}$ と表せるので,$a+b$ の値を求めてください.

解答形式

半角数字で解答してください。

22月前

11

【補助線主体の図形問題 #084】
 2022年最後の図形問題です。今年ラストは補助線の威力を存分に味わえる問題を用意しました。存分に試行錯誤をお楽しみください。

お知らせ

2023年初頭は西暦を織り込んだ数学・パズルの問題をお送りします。1月1日夜から6~7日間お届けするつもりです(まだ作問中です)。どうぞお楽しみに!
※参考:今年年始にお届けした2022年問題
https://pororocca.com/problem/?tag=2022%E5%B9%B4%E5%95%8F%E9%A1%8C&sort_by=oldest

解答形式

${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。