過去垢の問題(整数➀)

katsuo_temple 自動ジャッジ 難易度: 数学 > 競技数学
2024年11月11日0:29 正解数: 3 / 解答数: 3 (正答率: 100%) ギブアップ不可

問題文

以下の式を満たす素数の組$(a,b,c,d)$について、$a×b×c×d$の総和を求めよ。
$$
4a²+b²+c²=d²
$$

解答形式

半角数字で解答してください。


スポンサーリンク

解答提出

この問題は自動ジャッジの問題です。 解答形式が指定されていればそれにしたがって解答してください。

Discordでログイン Sign in with Google パスワードでログイン

ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。

または


おすすめ問題

この問題を解いた人はこんな問題も解いています

根号と指数

y 自動ジャッジ 難易度:
4月前

6

$$
\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{n^{-64}}}}}}}
$$

指数・対数

y 自動ジャッジ 難易度:
5日前

3

$$
log_2(\frac{1}{1024})^n>6i^6
$$

絶対値(15)

y 自動ジャッジ 難易度:
7月前

3

$$
|\sqrt{m}^{2}|=log_216\\の解は、どれか(m>0)。
$$
$$
(1)4(2)3(3)2(4)1
$$

絶対値(4)

y 自動ジャッジ 難易度:
7月前

4

$$
|tan2250°・cos1800°・sin1200°|\\を求めて下さい。
$$
$$
(1)\frac{1}{2}(2)\frac{\sqrt{3}}{2}(3)1(4)2
$$

[C] Soft Spring

masorata 自動ジャッジ 難易度:
9月前

3

問題文

$a>0$ を定数とする。$t\geq0$ で定義された実数値関数 $x(t)$ について、以下の微分方程式の初期値問題を考える:

$$
\begin{cases}
\displaystyle x''(t)=-\frac{x(t)}{(1+\lbrace x(t) \rbrace^2)^2} \ \ \ (t\geq0)\\
\displaystyle x(0)=\frac{\sqrt2}{4}, \ x'(0)=a
\end{cases}
$$

(1)$\displaystyle \lim_{t \to +\infty}x(t)=+\infty$ となる $a$ の範囲は、$\displaystyle a \geq \frac {\fbox{ア}\sqrt{\fbox{イ}}}{\fbox{ウ}}$ である。
(2)$\displaystyle a = \frac {\fbox{ア}\sqrt{\fbox{イ}}}{\fbox{ウ}}$ のとき、$\displaystyle x(t)=\frac{3}{4}$ となる $t$ の値は $\displaystyle t = \frac {\fbox{エ}}{\fbox{オカ}}+\frac{\fbox{キ}}{\fbox{ク}}\log2$ である。ただし $\log$ は自然対数とする。

解答形式

ア〜クには、0から9までの数字が入る。同じ文字の空欄には同じ数字が入る。
(1)の答えとして、文字列「アイウ」を半角で1行目に入力せよ。
(2)の答えとして、文字列「エオカキク」を半角で2行目に入力せよ。
ただし、分数はそれ以上約分できない形で、根号の中身が最小になるように答えよ。

計算

kokoyu 採点者ジャッジ 難易度:
4月前

3

問題文

連続する5つの整数の和は必ず5の倍数になる。この理由を、nを使った式で説明しなさい

解答形式

数字は半角とする

ネタ

yudukikun5120 自動ジャッジ 難易度:
2年前

5

$\vec{x}=(1,\ p^{ \frac{1}{p}} )$ なるベクトル $\vec{x}$ の $L^{p \to +0}$ ノルムの値を求めよ.

因数分解(1)

y 自動ジャッジ 難易度:
7月前

3

$$
次の因数分解した形はどれか。\\
ab+bc+{a}^{2}{b}^{2}+a{b}^{2}c
$$
$$
(1){ab}^{2}(bc+1)
(2){bc}^{2}(ab+1)
(3)2ab(bc+1)
(4)(ab+1)(ab+bc)
$$


問題文

$N$ を正の整数、$c>0$ を定数とする。実数の組 $(t_1,t_2,\ldots,t_N)$ に対して関数

$$
f_n(t_1,t_2,\ldots,t_N)=t_n(1-t_n)\left(c(1+t_n)-\sum_{i=1}^{N}t_i\right) \ \ \ (n=1,2,\ldots ,N)
$$

を考える。また、$N\times N$ 行列 $J(t_1,t_2,\ldots,t_N)$ を

$$
J(t_1,t_2,\ldots,t_N) =
\left(
\begin{array}{ccc}
\frac{\partial f_1}{\partial t_1} & \cdots & \frac{\partial f_1}{\partial t_N} \\
\vdots & \ddots & \vdots \\
\frac{\partial f_N}{\partial t_1} & \cdots & \frac{\partial f_N}{\partial t_N}
\end{array}\right)
$$

と定義する。

$N=1000,\ \displaystyle{c=\frac{1000}{1.23}}$ として、以下の問いに答えよ。

(1)$1000$個の実数の組 $(x_1,x_2,\ldots,x_{1000})$ であって、$x_1\leq x_2 \leq \ldots \leq x_{1000} $ かつ

$$
f_n(x_1,x_2,\ldots,x_{1000})=0\ \ \ (n=1,2,\ldots ,1000)
$$

を満たすものはいくつあるか。

(2)(1)で考えた組のうち、$J(x_1,x_2,\ldots,x_{1000})$ の固有値の実部がすべて負であるようなものはいくつあるか。

解答形式

(1)の答えを半角数字で1行目に入力せよ。
(2)の答えを半角数字で2行目に入力せよ。

[B] Symmetric Concavity

masorata 自動ジャッジ 難易度:
9月前

3

問題文

関数 $f:(0,\infty)\to(0,\infty)$ は $C^2$級で、任意の $x>0$ に対して

$$
f(1)=1,\ \ f\left(\frac{1}{x}\right)=\frac{f(x)}{x},\ \ \frac{d^2}{dx^2} f(x)\leq 0,\ \ \frac{d^2}{dx^2} \left( \frac{1}{f\left(\frac{1}{x}\right)} \right) \leq 0
$$

をすべて満たすとする。このような $f$ に対し

$$
I [f]=\int_{\frac{1}{2}}^{2}f(x)dx
$$

を考える。

(1)$I[f]$ の最大値は $\displaystyle \frac{\fbox{アイ}}{\fbox{ウエ}}$ である。
(2)$I[f]$ の最小値は $\fbox{オ}-\fbox{カ}\log\fbox{キ}$ である。ただし $\log$ は自然対数である。

解答形式

ア〜カには、0から9までの数字が入る。
(1)の答えとして、文字列「アイウエ」をすべて半角で1行目に入力せよ。
(2)の答えとして、文字列「オカキ」をすべて半角で2行目に入力せよ。
ただし、対数の中身が最小となるように答えよ。

根号による計算(3)

y 自動ジャッジ 難易度:
7月前

3

$$
\sqrt{{n}^{2}}(nは偶数、かつ、一桁)\\について、全部の和を求めて下さい。
$$

微分・積分(19)

y 自動ジャッジ 難易度:
7月前

10

$$
f(x)={i}^{n}\\について、n=10003のときのf'(x)の値は、偶数か奇数、\\
どちらですか。
$$
$$
(1)偶数(2)奇数
$$