PGC005 (E)

pomodor_ap 自動ジャッジ 難易度: 数学 > 競技数学
2024年11月21日21:00 正解数: 3 / 解答数: 13 (正答率: 23.1%) ギブアップ数: 3
この問題はコンテスト「PGC005」の問題です。

全 13 件

回答日時 問題 解答者 結果
2025年3月13日0:04 PGC005 (E) araro
不正解
2025年3月13日0:04 PGC005 (E) araro
不正解
2025年3月13日0:03 PGC005 (E) araro
不正解
2025年3月13日0:03 PGC005 (E) araro
不正解
2025年3月12日23:57 PGC005 (E) araro
不正解
2025年3月12日23:56 PGC005 (E) araro
不正解
2024年11月22日0:57 PGC005 (E) natsuneko
正解
2024年11月22日0:43 PGC005 (E) natsuneko
不正解
2024年11月21日22:19 PGC005 (E) nmoon
不正解
2024年11月21日22:10 PGC005 (E) nmoon
不正解
2024年11月21日21:57 PGC005 (E) nmoon
不正解
2024年11月21日21:22 PGC005 (E) yuyusama
正解
2024年11月21日20:56 PGC005 (E) Furina
正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

除夜コン没問

mahiro 自動ジャッジ 難易度:
16月前

7

問題文

$f(x)$ は $x$ が $3$ で割り切れる回数を示します.
このとき,$$f(\prod_{k=2}^{2024} \lfloor \log_2 k\rfloor )$$ を求めて下さい.

解答形式

一意の整数値に定まるので、それを半角で解答してください.

PGC005 (F)

pomodor_ap 自動ジャッジ 難易度:
5月前

7

問題文

$AB=AC$ なる三角形 $ABC$ について,線分 $AB$ 上に点 $D$ をとり,点 $A$ から円 $DBC$ に引いた接線と円 $DBC$ の接点のうち,直線 $DC$ について点 $B$ 側にあるものを $T$ とします.円 $ATC$ と線分 $AB, BC$ の交点をそれぞれ $E(\neq A), P(\neq C)$ とし,直線 $DT$ と直線 $BC$ の交点を $Q$ とすると,直線 $AB$ は $\angle PAQ$ を二等分しました.$AD=7, DC=13$ のとき,線分 $AC$ の長さは互いに素な正整数 $a, b$ を用いて $\dfrac{a}{b}$ と表せるので,$a+b$ を求めてください.

幾何問題24/1/8

miq_39 自動ジャッジ 難易度:
16月前

9

問題文

$AB=5,AC=9$ なる三角形 $ABC$ があり,その外接円を $\Gamma$ とします.辺 $BC$ の中点を $D$ とすると,$B$ における $\Gamma$ の接線と半直線 $DA$ が点 $E$ で交わりました.また,辺 $AC$ 上の点 $F$ が $\angle CDF=\angle BEA$ をみたしています.$DF=\dfrac{10}{3}$ のとき,線分 $AE$ の長さは互いに素な正整数 $a,b$ を用いて $\dfrac{a}{b}$ と表せるので,$a+b$ の値を求めてください.

解答形式

半角数字で解答してください。

C

nmoon 自動ジャッジ 難易度:
6月前

11

問題文

三角形 $ABC$ の外心を $O$,垂心を $H$,外接円を $\Gamma$ とする.そして,以下のように点を4つとる.

  • 直線 $BH$ と $\Gamma$ との交点を $P(\not=B)$ とする.
  • 直線 $PO$ と $\Gamma$ との交点を $Q(\not=P)$ とする.
  • 直線 $QH$ と $\Gamma$ との交点を $R(\not=Q)$ とする.
  • 直線 $RO$ と $\Gamma$ との交点を $S(\not=R)$ とする.

このとき,3点 $ C,H,S$ が同一直線上にあった.

$$AH=17 , AO=11$$

のとき,三角形 $ABC$ の面積を求めてください.

解答形式

答えを2乗した値は,互いに素な2つの正整数 $a,b$ を用いて $\displaystyle\frac{a}{b}$ と表されるので,$a+b$ を求めてください.

展開図3

Fuji495616 自動ジャッジ 難易度:
13月前

5

問題文

図1は、あるへこみのない立体の展開図です。図1は合同な正方形2個、合同な菱型4個、合同な台形8個からなり、これを組み立てると2個の正方形1組がたがいに向かい合い、2個の台形4組がたがいに向かい合い、2個の菱形2組がたがいに向かい合います。また、図2は図1に使われている3種類の図形を、1目盛りが1cmの方眼用紙に描いたものです。図1を組み立ててできる立体の体積は何cm$^3$ですか。
              図1

              図2

解答形式

四捨五入して整数で答えてください。
例)$\frac{17}{4}cm^3$→4


問題文

4桁の自然数Nの千の位、百の位、十の位、一の位の数字をそれぞれa,b,c,dとする。次の条件を満たすNは何通りあるか、それぞれ答えなさい。
問1 a<b<c<d 問2 a>b≧c,5<d 問3 a>b,b<c<d

解答形式

下記のように解答お願いします。問題番号と〜にあたる部分には半角スペース1個分空けてください。
問1 〜通り
問2 〜通り
問3 〜通り

D

Furina 自動ジャッジ 難易度:
6月前

3

問題文

$AB=2,AC=1$ をみたす三角形 $ABC$ の垂心を $H$,内心を $I$,外接円を $\Gamma$ とします.直線 $AH$ と $BI$ の交点を $D$ とし,$A$ における $\Gamma$ の接線と直線 $CD$ の交点を $X$ とすると,$AX=BX$ となりました.このとき,辺 $BC$ の長さを求めてください.ただし,求める値は,互いに素な正整数 $a,c$ と平方因子をもたない正整数 $b$ を用いて $\dfrac{a+\sqrt{b}}{c}$ と表されるので,$a\times b\times c$ を解答してください.

解答形式

半角数字で入力してください。

交わる円と三角形

tb_lb 自動ジャッジ 難易度:
20月前

20

【補助線主体の図形問題 #115】
 今週の図形問題です。今回は重めの問題にしてみました。とはいえ、補助線が活躍するのはいつも通りです。じっくり腰を据えて挑戦してください!

解答形式

${
\def\cm{\thinspace \mathrm{cm}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

円と菱形

tb_lb 自動ジャッジ 難易度:
18月前

11

【補助線主体の図形問題 #121】
 今週の図形問題です。補助線が活躍するのはいつも通りで、さらに、手慣れた方なら暗算で解けてしまうかもしれません。ぜひ幅広く挑戦してもらえたら、と思います。

解答形式

${
\def\cm{\thinspace \mathrm{cm}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

整数問題7/19

miq_39 自動ジャッジ 難易度:
22月前

7

問題文

$p^{2}q^{3}+r^{2}=s^{4}$ を満たす素数の組 $(p,q,r,s)$ は $n$ 組あり,それぞれの組について $S=p+q+r+s$ を求めると,$S$ の総積は $N$ である.
$n$ および $N$ の値を求めよ.

解答形式

一行目に $n$ の値を,二行目に $N$ の値を,それぞれ半角数字で解答してください.

求長問題15

Kinmokusei 自動ジャッジ 難易度:
4年前

10

問題文

内接四角形ABCDとその対角線の交点Mについて、図のような条件が与えられたとき、線分ACの長さを求めてください。

解答形式

半角数字で解答してください。

昔作った漸化式

masorata 自動ジャッジ 難易度:
16月前

7

問題文

数列 $\{a_n \}$ $(n=1,2,...)$ が漸化式:

$$
a_1=2, \ \displaystyle a_{n+1}=\frac{5a_n+3\sqrt{a_n^2-4\ }}{4}\ \ \ (n=1,2,\ldots)
$$

を満たすとき、$\displaystyle a_7=\frac{\fbox{アイウエ}}{\fbox{オカ}}$ である。

解答形式

ア〜カには、0から9までの数字が入る。
文字列「アイウエオカ」をすべて半角で1行目に入力せよ。
ただし、それ以上約分できない形で答えよ。