以下の式を満たす任意の正整数の組$(x,y)$について、$xy$としてありうる値の総和を求めて下さい。 $$ x^{y}=y^{x-y} $$
半角数字で解答して下さい。
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
以下の2次方程式 $$ x^{2}-2ax+b=0 ― (*) $$ について,自然数$n$を用いて以下の手順で係数$a,b$を定める。 $a:-n$以上$n$以下の整数が書かれたカードの中から1枚引いて書かれていた数字。 $b:-n$以上$n^{2}$以下の整数が書かれたカードの中から1枚引いて書かれていた数字。 カードを引く確率は同様に確からしいとし,できた2次方程式が実数解をもつ確率を$P(n)$とする。
$(2)$ $P(n)$を$n$の式で表せ。
(3)(4)は,自作場合の数・確率1-3につづく
2025/01/07追記 解説をアップデート,全員に対して公開に設定
$$ P(n)= \frac{A(Bn+C)(Dn+E)}{F(Gn^{2}+Hn+I)} $$
$A$~$I$に当てはまる整数を半角数字,空白区切りで回答
文字式の分数解答で自動ジャッジするのが大変だったので穴埋め式です。 わざとわかりづらくしてるので、1が入るところとかあります。
この問題は(2)です。が(1)を解かなくてもできます。解くと作者が喜びます。
$(1)$ $P(2)$の値を求めよ。
(2)~(4)は,自作場合の数・確率1-2につづく
分母分子の順に半角数字2つを空白区切りで回答 例)$\frac{1}{2}$と答えたいときは 2 1 と回答
$0$時$0$分〜$23$時$59$分とする時刻$A$時$B$分について、$60A+B,100A+B$が共に平方数となるとき、$A×B$の総和を求めよ。
$$次の条件によって定められる数列a_{n}の一般項を求めよ。$$$$a_{1}= \frac{2}{3},a_{n+1} =3(a_{n})^2+2a_{n}$$
$$a_{n}= 🄰 ^{b_{n}}-\frac{🄱}{🄲} ,b_{n}= 🄳 ^{n-1}-🄴 $$$$と表されるので$$$$🄰 + 🄱 + 🄲 + 🄳+ 🄴 の値を入力してください$$
98x^2+190x-312を因数分解せよ。
4x4のマス目のうち1つを、更に4x4に分割します。いくつかのマスで長方形を作るとき、何種類の長方形を作れますか。? 但し、同型でも場所が異なるなら違う種類と見なします。
半角数字で入力してください。
式1の時、式2の解を求めよ。 ただし、数の小さい順に答え、 答えが2つ以上ある場合、「,」を用いること。 例 2分の1と1の時は、1/2,1
$$ 12a^{2}-a=1 $$
$$ 16a^{2}-8a-9a^{2}-6a $$
$(0,0),(4,0),(0,4),(4,4)$を頂点とする正方形を、頂点が全て格子点上にある三角形4つに分割する方法はいくつありますか。 回転や裏返しをして同じ形になるものも区別するものとします。
次の式を計算しなさい。
$$ \frac{(28^{2}+28-27^{2}+27)^{2}}{5!^{2}}-(\frac{11}{12})^{2} $$
$AB≠AC$を満たす鋭角三角形$ABC$の内心を$I$とする。三角形$ABC$の内接円$\omega$は辺$BC,CA,AB$とそれぞれ点$D,E,F$で接している。$D$を通り$EF$に垂直な直線と$\omega$の交点のうち,$D$でない方を$G$とし,直線$AG$と$\omega$の交点のうち,$G$でない方を$H$とする。さらに,三角形$BHF$と三角形$CHE$の外接円の交点のうち,$H$でない方を$J$とし,直線$HJ$と直線$DI$の交点を$X$とすると以下が成立した。 $$ DX=\sqrt{1122} AH||DX DG=22 $$ このとき,$AX^{2}$は互いに素な正整数$a,b$を用いて$\frac{a}{b}$と表せられるので,$a+b$の値を解答して下さい。
4x4のマスのうち1個以上に、対角線を1本ずつ引いたとき、全ての対角線がループの一部分であるものは何通りですか? 但し、「ループの一部分である」とは、 全ての対角線の端が、ちょうど1つの別の対角線の端と同位置にあることを意味します。
$$ 4a^{2}-4a=-1 $$
$$ (2a-2)^{10000} $$