代数学

Hensachi50 自動ジャッジ 難易度: 数学 > 競技数学
2025年3月18日20:46 正解数: 4 / 解答数: 6 (正答率: 66.7%) ギブアップ不可
代数学

全 6 件

回答日時 問題 解答者 結果
2025年10月22日23:16 代数学 Americium243
正解
2025年10月22日23:15 代数学 Americium243
不正解
2025年10月22日23:14 代数学 Americium243
不正解
2025年3月21日11:33 代数学 tima_C
正解
2025年3月19日10:28 代数学 nanohana
正解
2025年3月19日10:23 代数学 yes
正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

関数方程式

Sry 自動ジャッジ 難易度:
46日前

7

問題

$実数全体で定義され、実数値を取る定数でない関数f(x)がある。$
$この関数が任意の実数x,yについて恒等式$
$$f(x^2+y)=f(kx^2+2y)-f(3x^2)$$
$を満たすとき、定数kの値を求めよ。$


問題文

△ABC とその外接円 O があり、OA = 3、AB = 4 である。半直線 AO と線分 BC が交わるように点 C をとり、その交点を D とする。BD : DC = 2 : 1 となるときの OD の長さを全て求めなさい。ただし、点 C は弧 AB 上にないものとする。

解答形式

答えはある整数 $a, b, c$ を用いて$$\rm{OD} = \frac{b \pm \sqrt{c}}{a}$$と表せるので、一行目に $a$、二行目に $b$、三行目に $c$ を半角で入力してください。

指数

SOCa 自動ジャッジ 難易度:
18月前

7

問題文

aiueaiuの7字を並べるとき少なくとも1つの「ai」が「ue」よりも前にあるのは何通りか。

解答形式

例)半角英数字。

自作問題8

iwashi 自動ジャッジ 難易度:
29日前

1

問題文

次の文章の$\fbox{1},\dotsc,\fbox{6}$に当てはまる数を求めよ。


$$
a_{n} = \int_{1}^{e^{0.1}}(\log{x})^{n}dx \qquad (n=0,1,2,\dotsc)
$$とする。部分積分法を用いることで,漸化式
$$
a_{n} = (\fbox{1})^{n}\cdot e^{\fbox{2}} - na_{n-1} \qquad (n\geq1)
$$を得る。$a_{3}$は,有理数$\fbox{3},\fbox{4}$を用いて
$$
a_{3} = \fbox{3}e^{\fbox{2}}+\fbox{4}
$$と表せる。$1\leq x\leq e^{0.1}$のとき$0\leq(\log{x})^{n}\leq0.1^{n}$より$0\leq a_{n}\leq(e^{0.1}-1)\cdot0.1^{n}$である。$n=3$に対してこの不等式を用いることにより$e^{-0.1}$を小数点第4位まで求めることができる。$e^{-0.1}$の小数点第5位以下を切り捨てた小数点第4位までの値は$\fbox{5}$である。

また,$\displaystyle b_{n}=\frac{(-1)^{n}e^{-0.1}}{n!}a_{n}$とすることで$a_{n},b_{n}$の一般項は容易に求められる。
$$
0 \leq |b_{n}| = \frac{e^{-0.1}a_{n}}{n!} < \frac{1-e^{-0.1}}{10^{n}\cdot n!}
$$より,はさみうちの原理から$\displaystyle\lim_{n\to\infty}|b_{n}| = 0$,つまり
$$
\sum_{n=0}^{\infty}\frac{(-0.1)^{n}}{n!} = e^{\fbox{6}}
$$が求められる。

解答形式

$\mathrm{i}=1,\dotsc,6$に対し,$\fbox{i}$に当てはまる数を$\mathrm{i}$行目に半角で答えてください。例えば,$\fbox{1},\dotsc,\fbox{6}$にそれぞれ$1.2,3.45,-6,7.89,1.2356,-2.3$が当てはまるときは

1.2
3.45
-6
7.89
1.2356
-2.3

と解答してください。

Circle(normal)

Weskdohn 自動ジャッジ 難易度:
13月前

2

問題文

点の定義は次をチェック(https://pororocca.com/problem/2047/)
円$X,X',ω$に接する円の内,小さい方の円$T'$の半径を求めよ.

解答形式

答えは互いに素な整数$a,b,c,d$を用いて,$\frac{a+b√c}{d}$と書けるので,$a+b+c+d$を求めて下さい.但し$d>0$とします.
なお,半角で打ち込むこと.

数列

11iill 採点者ジャッジ 難易度:
14月前

1

a,bはともに正の数とする。

長さに上限がない定規が二つある。二つの定規はともに等間隔に目盛が刻んである。定規Aの目盛の間隔はaで、定規Bの目盛の間隔はbである。
定規Aと定規Bが目盛が二か所で重なることはないための、a,bに関する必要十分条件を求めよ。

関数方程式

noname 採点者ジャッジ 難易度:
17月前

1

問題文

実数に対して定義され実数値をとる関数$f$であって、任意の実数$x,y$に対して$$f(f(x)+y)=2f^{[|y|]}(x)+f^{[|x|]}(y)$$を満たすものを全て求めてください。ただし、$f^{s}(t)$は$$f^{s}(t)=f(f(f(…f(t)))…),f^0(x)=0$$($f$が$s$個)、$[α]$は$α$以下の最大の整数とします。

*解答だけで構いません。

双六と確率

Aoi 自動ジャッジ 難易度:
18月前

2

双六でnマス目に止まる確率を求めよ。
ただし、n≦10、さいころは1個とする。

解答形式

初投稿で難易度設定とか解答の作り方とかよく分かってないので間違っていたらすみません。
・アルファベット&記号は全て半角(ただし、マイナスについては基本的に「ー」を使い、aのb-1乗のような場合では「-」を使います。)
・a分のbのc乗→(b/a)^c
・b/a+d/cのようなものは1項にまとめてください。
・場合分けがある場合は
n≦aのとき(解答)
b≦n≦cのとき(解答)
といったように改行して答えてください。

2024⑥

7777777 採点者ジャッジ 難易度:
17月前

1

問題文

$2024!$の約数の和は$2025$の倍数であることを示せ。

角度

iwasaki 自動ジャッジ 難易度:
16月前

2

問題文

凸四角形ABCDが∠ABD=12°、∠DBC=84°、∠ADB=18°、BD=BCを満たすとき、角ACDは何度ですか。

解答形式

半角数字で解答してください。

No.08 絶対値を含む命題

Prime-Quest 自動ジャッジ 難易度:
20月前

1

問題

次の関数 $x,y$ における定数 $c$ の命題「つねに $x\geqq 3$ ならば $y$ の値域幅は $c$ 以上」は真か.$$0\leqq t\leqq 2c,\quad x=|t-c|+|t-3|+|t-5|,\quad y=|||t-1|-2|-3|$$

解答形式

逆,裏,対偶それぞれの整数反例の和を半角数字で入力してください.

Circle(very easy)

Weskdohn 自動ジャッジ 難易度:
13月前

1

問題文

半径$15$の円$ω$について,ある直径$AB$を考える.
$AB$を三等分する点を順に$P,Q$とし(つまり$A・P・Q・B$の順に点が並ぶ),
$AP$を直径とする円$X$を描く.
また,$AB$に直交する直径$CD$について,同様に$R,S$を取り($C・R・S・D$の順),$CR$を直径とする円$X'$を描く.
ここで,円$X$の接線の内,$CD$と平行で且つ円$X'$側のものを直線$F$,円$X'$の接線の内,$AB$と平行で且つ円$X$側のものを直線$G$とする.
直線$F,G,$円$ω$に接する円$T$として考えられるものは$2$つあるが,そのうち小さい方の半径を求めよ.

解答形式

答えは整数$n,m,l$で$n√m+l$と書ける.
$n+m+l$を求めて下さい.
尚,マイナス含め,全て半角で打ち込むこと.

追記

続編(normal):https://pororocca.com/problem/2048/