lim_int_sin (大数宿題2024-10)

Lim_Rim_ 自動ジャッジ 難易度: 数学 > 高校数学
2025年3月29日2:40 正解数: 4 / 解答数: 4 (正答率: 100%) ギブアップ数: 1

全 4 件

回答日時 問題 解答者 結果
2025年5月14日17:43 lim_int_sin (大数宿題2024-10) Weskdohn
正解
2025年4月30日23:32 lim_int_sin (大数宿題2024-10) OYU__0YU
正解
2025年4月11日18:06 lim_int_sin (大数宿題2024-10) AS
正解
2025年3月29日9:48 lim_int_sin (大数宿題2024-10) Furina
正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

整数の剰余

mahiro 自動ジャッジ 難易度:
44日前

14

問題文

以下によって定義される整数 $N$ を素数 $13907$ で割った余りを求めてください.$$N=\prod_{k=1}^{13906} (k^2+2025)$$

解答形式

13906以下の非負整数で解答してください

800A

MARTH 自動ジャッジ 難易度:
22日前

14

正の整数 $m$ に対し,
$$f(m)=\sum_{k=0}^m(k+1)k2^k\frac{(2m-k-1)!}{(m-k)!}$$
と置きます.このとき, $f(5000)$ を素数 $5003$ で割った余りを求めてください.

G

kusu394 自動ジャッジ 難易度:
5月前

10

問題文

$\triangle{ABC}$ について直線 $BC$ 上に $W,B,C,E$ の順と並ぶように点 $W,E$ を取ると以下のことが成立しました.

  • $AC=35, AW=45,BW=36$
  • $BC:CE=1:8$
  • $\triangle AWC$ は鈍角三角形であり,その面積は$72\sqrt{111}$

このとき $\triangle{BAE}$ の外心を $O$ とすると,互い素な正整数 $a,b$ を用いて,
$$\triangle{BAE}:\triangle{WAO}=a:b$$
と面積比が表せるので $a+b$ の値を解答してください.

解答形式

半角整数で入力してください.

過去垢の問題(整数➀)

katsuo_temple 自動ジャッジ 難易度:
6月前

7

問題文

以下の式を満たす素数の組$(a,b,c,d)$について、$abcd$の総和を求めよ。
$$
4a²+b²+c²=d²
$$

解答形式

半角数字で解答してください。

Two sequences (学コン2025-2-6)

Lim_Rim_ 自動ジャッジ 難易度:
50日前

4

問題文

$p=2^{10} - 3$とおき, 数列$a_n, b_n$を以下の式で定める.
\begin{aligned}
&a_0=0,\quad a_1 = 1,\quad a_{n+2} = 2a_{n+1} +2a_n & (n=0,1,\dots) \\
&b_0=0, \quad b_1 = 1,\quad b_{n+2} = 2b_{n+1} +(p+2)b_n & (n=0,1,\dots)
\end{aligned}

(1) $a_n,b_n$をそれぞれ$n$で表せ.
(2) $a_{1024}$を$p$で割った余りを求めよ. ただし, 整数$m$に対して$m^p\equiv m\pmod{p}$であることを用いてもよい.

解答形式

(2) の解答を入力してください((1)は解答参照)

備考

本問は大学への数学2025年2月号6番に掲載された自作問題です.

まわりまわる面積比較

kusu394 自動ジャッジ 難易度:
12月前

4

問題文

四角形 $ABCD$ と三角形 $XYZ$ は以下の条件を満たします.
$$AD=505, \hspace{1pc} BC=507, \hspace{1pc} AB=CD, \hspace{1pc} \angle ABC=60^\circ, \hspace{1pc} \angle DCB=80^\circ$$ $$YZ=1, \hspace{1pc} XY=XZ, \hspace{1pc} \angle YXZ=40^\circ$$ このとき, 四角形 $ABCD$ の面積は三角形 $XYZ$ の面積の何倍ですか.

解答形式

答えは正の整数値となるので, その整数値を半角で入力してください.

追記:
若干日本語がおかしかったため編集しました. 解答には影響はないと思われます.
一応ヒント2に元の問題文を残してあります. 以上, よろしくお願いします.

Ratio K/D (2019-理①-6)

Lim_Rim_ 自動ジャッジ 難易度:
49日前

4

問題文

$1000^{n}$ ($n$ は自然数) の正の約数の個数を $D_{n}$ とし, そのうち $10^{n}$ より大きく, $100^{n}$ より小さいものの個数を $K_{n}$ とする。
極限値
$$
\lim_{n \to \infty} \dfrac{K_{n}}{D_{n}}
$$
を求めよ。

解答形式

電卓を用いるなどして極限値の小数第5位までを解答してください.(0.1234567...の場合0.12345と解答する)

備考

本問は京大作問サークル理系模試2019の第1回6番に掲載している問題です.

二項係数の和と極限

nps 自動ジャッジ 難易度:
2月前

9

問題文

解答形式

半角で入力してください。
また、必要であればe,πを用いてください。

大きい数の位の値

noname 自動ジャッジ 難易度:
6月前

7

問題文

$1998^{2024}$の下$2$桁を求めよ。

解答形式

1行目に半角整数で入力してください。

H

kusu394 自動ジャッジ 難易度:
5月前

10

問題文

点 $O$ を中心とする半径 $1$ の円と,その円に内接する正 $169$ 角形 $A_1A_2\cdots A_{169}$ が与えられています.この正 $169$ 角形の頂点のうち,$A_{169}$ を除いた $168$ 頂点から $3$ 点を選ぶ方法は ${}_{168}\mathrm{C}_3$ 通り考えられますが,それらすべてについて選んだ $3$ 点を頂点とする三角形の垂心と $O$ の距離の $2$ 乗の総和を解答してください.(総和の $2$ 乗ではないことに注意してください.)

E

kusu394 自動ジャッジ 難易度:
5月前

27

問題文

holoXのずのーである『博衣こより』はとある実験に成功し、同じholoXのメンバーである『ラプラス・ダークネス』『鷹嶺ルイ』『沙花叉クロヱ』『風真いろは』と自分自身をそれぞれ $6$ 人ずつに分身させてしまいました.
分身させた計 $30$ 人のうち $6$ 人を選び,下記の条件に沿って左右 $1$ 列に並べる方法は何通りありますか.

  • 『博衣こより』と『沙花叉クロヱ』は隣り合ってはならない.(こよクロ(『博衣こより』と『沙花叉クロヱ』のユニット)は解散しているため)
  • 『ラプラス・ダークネス』の左右のどちらか隣に『鷹嶺ルイ』がいないといけない(『ラプラス・ダークネス』は『鷹嶺ルイ』が近くにいないと不安になってしまうため.しかし,『鷹嶺ルイ』の隣に『ラプラス・ダークネス』がいなくても良い.)

解答形式

半角整数で入力してください.

いつものking property(に似た)問題

nps 自動ジャッジ 難易度:
2月前

1

問題文

∮(-π/6→π/3) ((sinx)^3)/(sinx+cosx)dxの値を求めよ。

解答形式

解答は π/a-(√ b+c)/d-(1/e)log(√f+g)の形になります。
a,b,c,d,e,f,gに当てはまる自然数を順に半角で答えてください。
また、1つの値の間は1つずつ空白を開けるようにしてください。
(例)a=2, b=3, c=11,d=5,e=6,f=7,g=8の場合、
2 3 11 5 6 7 8