整数の剰余

mahiro 自動ジャッジ 難易度: 数学 > 競技数学
2025年4月2日17:54 正解数: 10 / 解答数: 15 (正答率: 66.7%) ギブアップ不可
整数

全 15 件

回答日時 問題 解答者 結果
2025年5月17日18:20 整数の剰余 MACHICO
正解
2025年4月30日23:33 整数の剰余 OYU__0YU
正解
2025年4月12日13:58 整数の剰余 AS
正解
2025年4月12日12:33 整数の剰余 AS
不正解
2025年4月3日23:23 整数の剰余 MARTH
正解
2025年4月3日23:23 整数の剰余 MARTH
正解
2025年4月3日23:21 整数の剰余 MARTH
不正解
2025年4月3日18:13 整数の剰余 natsuneko
正解
2025年4月3日18:04 整数の剰余 natsuneko
不正解
2025年4月3日18:02 整数の剰余 natsuneko
不正解
2025年4月2日23:27 整数の剰余 Weskdohn
正解
2025年4月2日22:39 整数の剰余 Nyarutann
正解
2025年4月2日22:29 整数の剰余 Nyarutann
不正解
2025年4月2日20:55 整数の剰余 JoeFight
正解
2025年4月2日20:07 整数の剰余 Furina
正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

lim_int_sin (大数宿題2024-10)

Lim_Rim_ 自動ジャッジ 難易度:
2月前

4

問題文

(1) $\sin{2x} = 2\sin{x}\cos{x}$を用いて, $\displaystyle\lim_{t\to +0}\int_{t}^{1} \log{\sin{\frac{\pi}{2}\theta}}\, d\theta = -\log{2}$を示せ(極限値の存在は認めてよい). これを用いて$\displaystyle\lim_{t\to + 0}\int_{t}^{1} \dfrac{\theta\cos{\frac{\pi}{2}\theta}}{\sin{\frac{\pi}{2}\theta}} \, d\theta$ を求めよ.

(2) $\displaystyle\lim_{n\to \infty} \left(\int_{\frac{1}{n}}^{1} \sqrt[n]{\sin{\dfrac{\pi}{2}\theta}} \, d\theta\right)^{n}
$を求めよ.

解答形式

電卓などを利用することで, (1)の答えを $L_1$ とし, (2)の答えを $L_2$ とするとき, $L_1 + L_2$ の値を小数点第5位まで表示したものを回答してください. (例:0.1234567なら0.12345と解答する)

300N

poino 自動ジャッジ 難易度:
29日前

12

問題文

素数 $p,q,r,s$ が
$$p+q=r+s,pq+|p-q|=rs+|r-s|,pq≠rs$$
をみたすとき,$pq+rs$ としてあり得る値の総和を求めてください.

解答形式

半角数字で入力してください。

自作問題A1

imabc 自動ジャッジ 難易度:
14月前

11

問題文

正の実数 $x,y,z$ が $xyz=x+y+z+2$ を満たしています.このとき, $x+4y+9z$ の最小値を求めてください.

解答形式

答えを入力してください.


問題文

鋭角三角形 $ABC$ に対し,重心と垂心をそれぞれ $G,H$ とし,直線 $GH$ と辺 $AB,AC$ との交点をそれぞれ $D,E$ とし,直線 $AH$ と辺 $BC$ の交点を $F$ としたところ,$DH:HG=4:3,BF:FC=3:7$ となりました.
${AD}^2:{AE}^2$ は互いに素な正の整数 $a,b$ を用いて $a:b$ と表されるので,$a+b$ の値を求めてください.

解答形式

半角数字で解答してください.

2つの正方形と円

Fuji495616 自動ジャッジ 難易度:
16月前

10

問題文

下図は、2つの正方形と円を組み合わせた図形です。点(●)は小さい正方形の辺を4等分する点で、円は大きい正方形に内接しています。大きい正方形の面積が60㎠のとき、小さい正方形の面積は何㎠ですか。

解答形式

半角数字で入力してください。
例)10

求長問題15

Kinmokusei 自動ジャッジ 難易度:
4年前

11

問題文

内接四角形ABCDとその対角線の交点Mについて、図のような条件が与えられたとき、線分ACの長さを求めてください。

解答形式

半角数字で解答してください。

No.05 連立方程式と不等式

Prime-Quest 自動ジャッジ 難易度:
16月前

6

問題

次の実数 $a,b,c$ に対し,つねに $|ax+by|\leqq |c|$ となる実数 $x,y$ の和の値域幅を求めよ.

  • $p,q$ の連立方程式 $ap+bq=c,\ (b-c)p+(c+a)q=a+7b$ は解を複数個もつ.

解答形式

半角数字で入力してください.

即興幾何

katsuo_temple 自動ジャッジ 難易度:
2月前

5

問題文

三角形$ABC$において,$A,B,C$から対辺に下ろした垂線の足をそれぞれ$D,E,F$とし,$AD,BC$の中点をそれぞれ$M,N$とする.$A N$と$EF$の交点を$P$とし,$DP$と$MN$の交点を$Q$,三角形$ABC$の外接円と$AQ$が再び交わる点を$R$としたとき,$$AN=10 AB=9 NR=3$$が成立した.このとき,$AC²$の値を解答してください.

解答形式

半角で解答してください.

Ratio K/D (2019-理①-6)

Lim_Rim_ 自動ジャッジ 難易度:
2月前

4

問題文

$1000^{n}$ ($n$ は自然数) の正の約数の個数を $D_{n}$ とし, そのうち $10^{n}$ より大きく, $100^{n}$ より小さいものの個数を $K_{n}$ とする。
極限値
$$
\lim_{n \to \infty} \dfrac{K_{n}}{D_{n}}
$$
を求めよ。

解答形式

電卓を用いるなどして極限値の小数第5位までを解答してください.(0.1234567...の場合0.12345と解答する)

備考

本問は京大作問サークル理系模試2019の第1回6番に掲載している問題です.

Reverse digits (学コン2024-12-3)

Lim_Rim_ 自動ジャッジ 難易度:
2月前

5

問題文

10の倍数でない正の整数 $n$ に対し, $f(n)$は, 十進法表示で $n$ を $1$ の位から逆の順番で読んで得られる正の整数として定めます. たとえば$f(123456789) = 987654321$です. $n+f(n)$が81の倍数となるような十進法で10桁の$n$の個数を解答してください.

備考

本問は大学への数学2024年12月学コン3番に掲載されている自作問題です.

No.01 展開と因数分解

Prime-Quest 自動ジャッジ 難易度:
17月前

6

問題

$(1)$ $4$ つの実数 $(10\pm\sqrt 2\pm 4\sqrt 3)^3+1$ の和と等しい整数の最大素因数を求めよ.
$(2)$ 方程式 $(2x^2-x)(2x^2-7x+6)=7$ の実数解 $x$ に対する $x^5-\dfrac{1}{x^5}$ の値を求めよ.

解答形式

$(1),(2)$ の和を半角数字で入力してください.

16月前

18

問題文

下図で、三角形ABCは直角二等辺三角形、三角形BCDは直角三角形です。CDの長さが3cm、DBの長さが11cmのとき、三角形ABCの面積は何㎠ですか。

解答形式

半角数字で回答してください。
例)10