第6問

sulippa 採点者ジャッジ 難易度: 数学
2025年5月16日21:30 正解数: 0 / 解答数: 1 ギブアップ不可
この問題はコンテスト「オリジナル漸化式の一般項10問」の問題です。

問題文

設問6

数列 ${a_n}$ が $a_1 = \sin^2 \alpha$ ($0 < \alpha < \frac{\pi}{2}$) および漸化式 $a_{n+1} = 4a_n(1-a_n)$ ($n \ge 1$) を満たすとき、一般項 $a_n$ を求めよ。

解答形式

例)ひらがなで入力してください。


スポンサーリンク

解答提出

この問題は出題者ジャッジの問題です。 出題者が解答を確認してから採点を行います。

Discordでログイン Sign in with Google パスワードでログイン

ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。

または


おすすめ問題

この問題を解いた人はこんな問題も解いています

10月前

2

$n$を0以上の整数とし、
$$
I_n = \dfrac{1}{(2n)!} \int^1_0 (x-1)^{2n} \left( \dfrac{e^x - e^{-x}}{2} \right)dx
$$
とする。これについて,以下の設問に答えよ。

$(1) \quad I_0$ を求めよ。

$(2) \quad I_nとI_{n-1}$ の関係式を作れ。

$(3) \quad \lim_{n \to \infty} I_n $を求めよ。

$(4) \quad \sum\limits_{n=0}^\infty \dfrac{1}{(2n)!}$ を求めよ。

ネタ

yudukikun5120 自動ジャッジ 難易度:
2年前

6

$\vec{x}=(1,\ p^{ \frac{1}{p}} )$ なるベクトル $\vec{x}$ の $L^{p \to +0}$ ノルムの値を求めよ.

初投稿

Upasha 自動ジャッジ 難易度:
2月前

13

問題文

命題「aⁿ+bⁿ=cⁿ (n整数、a,b,cの最大公約数1)を満たす全ての自然数a,b,cは互いに素である」の真偽を述べよ

解答形式

真ならば真、偽ならば偽と入力

工夫すると簡単になる問題

ac 自動ジャッジ 難易度:
3月前

17

問題

式1の時、式2の解を求めよ。
ただし、数の小さい順に答え、
答えが2つ以上ある場合、「,」を用いること。
例 2分の1と1の時は、1/2,1

式1

$$
4a^{2}-4a=-1
$$

式2

$$
(2a-2)^{10000}
$$

A

Nyarutann 自動ジャッジ 難易度:
2月前

31

問題文

$N, E, K, O$ には,$1$ 以上 $9$ 以下の相異なる正整数が入ります.
$$
N\times{E}\times{N}\times{E}\times{K}\times{O}=K\times{O}\times{N}\times{E}\times{K}\times{O}
$$を満たすとき,$N+E+K+O$ としてあり得る値の最大値と最小値のを求めてください.

解答形式

答えは正整数になるので,半角数字で解答してください。

約数ひっかけ問題

Americium243 自動ジャッジ 難易度:
13月前

37

問題文

注:すみません,ネタ問題です.TeXも使っていません.

任意の自然数nについて,約数の総和をp(n),約数の個数をq(n)とすると,整数の定数kを用いてp(n)=k×(q(n))と表せます.kを求めてください.

解答形式

半角の整数で解答してください.
余計な空白や改行を含まないよう注意してください.

nCrの足し算

tsukemono 自動ジャッジ 難易度:
11月前

61

問題文

次の計算をせよ。
$$
{}_{12}{\mathrm{C}}_{1}\quad+{}_{12}{\mathrm{C}}_{2}\quad+{}_{12}{\mathrm{C}}_{3}\quad+……+{}_{12}{\mathrm{C}}_{12}\quad
$$

解答形式

半角算用数字で解答してください

50629の素因数分解

masorata 自動ジャッジ 難易度:
4年前

62

問題文

$x^4+4$ を因数分解せよ。また、この結果を用いて $50629$ を素因数分解せよ。

解答形式

50629の素因数を小さい順に1,2,3......行目に半角数字で入力せよ。

鏡の中のf(x)

masorata 自動ジャッジ 難易度:
4年前

76

問題文

関数 $f(x)$ は、すべての実数 $x$ に対して

$$
f(x)=2f(-x)+\frac{3x}{x^2+1}
$$

をみたす。このとき、$f(x)$ の最大値を求めよ。

解答形式

求める最大値は $\frac{p}{q}$ ($p,q$は自然数) と書ける。$p,q$ の値をそれぞれ1,2行目に半角数字で入力せよ。なお、できるだけ約分した形で答えよ。

Sandwich+

baba 自動ジャッジ 難易度:
4年前

9

問題文

https://pororocca.com/problem/19/
こちらの問題の設定で,「裏裏裏裏裏表表表表表」というピザの塔ができるような調理は何通りあるか答えなさい.

解答形式

半角数字で入力してください.

hinu積分02

hinu 採点者ジャッジ 難易度:
4年前

1

問題

(1) 定積分

$$
\int_0^1 \frac{x\log x}{(x+1)^2}dx
$$

の値を求めよ。

(2) 関数列 ${f_n(x)}$ を

$$
f_{n+1}(x)=(x^x)^{f_n(x)},\quad f_1(x)=x^x
$$

で定める。定積分

$$
\int_0^1(x^x)^{{(x^x)}^{(x^x)\cdots}}dx:=\int_0^1\lim_{n\to \infty} f_n(x)\ dx
$$

の値を求めよ。ただしテトレーション $x^{{x^{x\cdots}}}$ は底 $x$ が $e^{-e}<x<e^{1/e}$ のとき収束することは証明せずに用いて良い。

備考

この問題の正解判定は出題者により手動で行われるため、判定までに時間がかかることがある。

hinu問題02

hinu 自動ジャッジ 難易度:
4年前

45

問題文

$a,b,c$ を実数とする。次の連立方程式を解け。

$$
a^2-4b-1=0\\
b^2-8c+28=0\\
c^2-6a+2=0\\
$$

解答形式

a,b,cを半角数字として(a,b,c)で解答してください。無理数などを使いたい場合はTeXコマンドを使用してください。