$x,y$を整数、$p$を素数とする。 $x^2-xy+y^2=2^p$を満たす組$(x,y,p)$をすべて求めよ。
$x+y+p$の値としてありうる値の総和を半角数字で入力してください。
誘導 $(1)$平方数を$3$で割った余りは$0$か$1$であることを示せ。
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
${}$ 西暦2026年問題第6弾です。問題文こそ集合の言葉を使っていますが、そちらは本質ではありません。整数問題としてお楽しみください。
${}$ 解答は求める最小値をそのまま半角で入力してください。 (例)最小値が106 → $\color{blue}{106}$
四角形 $ABCD$ と三角形 $XYZ$ は以下の条件を満たします. $$AD=505, \hspace{1pc} BC=507, \hspace{1pc} AB=CD, \hspace{1pc} \angle ABC=60^\circ, \hspace{1pc} \angle DCB=80^\circ$$ $$YZ=1, \hspace{1pc} XY=XZ, \hspace{1pc} \angle YXZ=40^\circ$$ このとき, 四角形 $ABCD$ の面積は三角形 $XYZ$ の面積の何倍ですか.
答えは正の整数値となるので, その整数値を半角で入力してください.
追記: 若干日本語がおかしかったため編集しました. 解答には影響はないと思われます. 一応ヒント2に元の問題文を残してあります. 以上, よろしくお願いします.
以下の $x$ に関する $100$ 次方程式の(重解を含む)$100$ 個の複素数解を $\alpha_1,\alpha_2,...,\alpha_{100}$ とします. $$x^{100}+x^{99}+2025x+12=0$$
このとき,以下の値を求めてください. $$\sum_{k=1}^{100} ({\alpha_k}^{100}+{\alpha_k}^{99})$$
整数で解答してください.
https://x.com/atwr0711/status/2000173940698927172?s=20 こちらの14番の問題と同じです.
以下の $x$ に関する $3$ 次方程式は相異なる $3$ 個の複素数解をもつので,それぞれの解を $\alpha,\beta,\gamma$ とします. $$x^3-2^{2025}x^2+24x-2^{2023}=0$$
このとき,以下の値は整数になるので,その正の約数の個数を求めてください. $$(\alpha+\beta)(\beta+\gamma)(\gamma+\alpha)$$
https://x.com/atwr0711/status/2000173940698927172?s=20 こちらの31番の問題と同じです.
次を満たす整数係数多項式の組 $(f,g)$ はいくつありますか? $$f(g(x))=x^6+1 0≦f(0),g(0)≦2025$$
条件を満たす組の個数を半角整数で $1$ 行目に入力してください。
${}$ 西暦2026年問題第8弾です。$2026$を$2^{26}$とする強引な西暦問題となりました。ついでに書くと、どこかに類題がありそうで、その点でも恐れています。皆さんはそんな僕の恐れなど気にせずにお楽しみください。
${}$ 解答は1行目に$p_3$の値を、2行目に$p_4$の値を、それぞれ半角で入力してください。「$p_3=$」「$p_4=$」といった記載は不要です。 (例)$p_3=$108、$p_4=$2026 → 《1行目》$\color{blue}{108}$、《2行目》$\color{blue}{2026}$
nを一桁の自然数とする。xについての多項式、
∫(0→x) (t^3 + {1/√(n-2)(n-3)(n-4)} t^-2 +1)^n dt
について、x^6の係数を自然数にするようなnを求めなさい。
半角で一桁の数字を入力してください。
$a>0,b>0$ のとき、 $a^{4}+4a^{3}b+2a^{2}b^{2}+4ab^{3}+b^{4}\geq0$ を示せ
記述形式でお願いします 入力がめんどくさい方は、紙に書いて、twitterのDMに送ってください
$4$ 点 $\mathrm{A,B,C,D}$ が $\mathrm{AB=BC=CD}=1,\mathrm{DA}=2$ を満たし、さらに線分 $\mathrm{BC}$ と線分 $\mathrm{DA}$ が点 $\mathrm{P}$ で交わっている。線分 $\mathrm{AP}$ の長さが最大となるとき、
$$ \mathrm{AC}=\frac{\sqrt{\fbox{アイ}-\sqrt{\fbox{ウエオ}\ }+\sqrt{\fbox{カキクケ}+\fbox{コサ} \sqrt{\fbox{シスセ}\ }\ }\ }}{\fbox{ソ}} $$
である。ただし、$\mathrm{XY}$ で線分 $\mathrm{XY}$ の長さを表すものとする。
必要であれば以下の事実を用いてよい。
・実数 $a,b,c$(ただし $a\neq-64$ )について、$\displaystyle p=\frac{b+c-a^2}{a+64},q=64p+a^2-b$ とおくと、$x$ についての恒等式
$$ 1024x^4+64ax^3+bx^2+2cx+p^2-q=(32x^2+ax+p)^2-q(x-1)^2 $$
が成り立つ(これは、右辺を展開して係数比較することで簡単に確かめられる)。
ア〜ソには、0から9までの数字または「-」(マイナス)が入る。 文字列「アイウエオカキクケコサシスセソ」を半角で1行目に入力せよ。 ただし、分数はそれ以上約分できない形で、かつ根号の中身が最小になるように答えよ。
ab-3c-d^2 = e …① 3cd+d^2+e^2 = abd …② a+8+2d = b …③ a+11+e = b+3 …④ を全て満たす自然数の組(a,b,c,d,e)のうち、a+b+c+d+eが最小となるようなものを求めよ。
a+b+c+d+e の値を半角数字で
${}$ 西暦2026年問題第9弾です。24時を回って、日付が変わってしまいました。僕の西暦問題では珍しく代数・解析分野からの出題となっています。さらにいうと、前回の問題と同じく$2026$を$2+2\sqrt{6}$と解釈する強引さを見せています。そんな珍しさと強引さを味わいながらお楽しみください。
${}$ 解答は求める解の個数をそのまま半角で入力してください。 (例)109個 → $\color{blue}{109}$ なお、解が存在しない(不能)場合は$\color{blue}{0}$と、解が無数に存在する(不定)場合は$\color{blue}{\mathrm{inf}}$と入力してください。
$x,y,z$は全て正の実数とします。次式で定義される$f(x,y,z)$について、次の値を求めてください。$$f(x,y,z)=\frac{1+x^2}{y+z}+\frac{1+y^2}{z+x}+\frac{1+z^2}{x+y}$$ $(1)$ $f(x,y,z)$の最小値 $(2)$ $x+y+z=1$のとき、$f(x,y,z)$の最小値 $(3)$ $x^2+y^2+z^2=1$のとき、$f(x,y,z)$の最小値
$(1)$の答えは$\fbox ア$、$(2)$の答えは$\fbox イ$、$(3)$の答えは$\fbox ウ\sqrt{\fbox エ}$です。 文字列「アイウエ」を解答してください。