次を満たす整数係数多項式の組 $(f,g)$ はいくつありますか? $$f(g(x))=x^6+1 0≦f(0),g(0)≦2025$$
条件を満たす組の個数を半角整数で $1$ 行目に入力してください。
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
nを一桁の自然数とする。xについての多項式、
∫(0→x) (t^3 + {1/√(n-2)(n-3)(n-4)} t^-2 +1)^n dt
について、x^6の係数を自然数にするようなnを求めなさい。
半角で一桁の数字を入力してください。
nを4以上1000以下の整数とする。1000以下の正整数の組$(a_1,a_2,…,a_n)$であって、$$a_1=\frac{a_2+a_3+a_4}{3},a_2=\frac{a_3+a_4+a_5}{3},…,a_{n-1}=\frac{a_n+a_1+a_2}{3},a_n=\frac{a_1+a_2+a_3}{3}$$を満たすものの個数を求めよ。
半角数字で解答してください。
$4$ 点 $\mathrm{A,B,C,D}$ が $\mathrm{AB=BC=CD}=1,\mathrm{DA}=2$ を満たし、さらに線分 $\mathrm{BC}$ と線分 $\mathrm{DA}$ が点 $\mathrm{P}$ で交わっている。線分 $\mathrm{AP}$ の長さが最大となるとき、
$$ \mathrm{AC}=\frac{\sqrt{\fbox{アイ}-\sqrt{\fbox{ウエオ}\ }+\sqrt{\fbox{カキクケ}+\fbox{コサ} \sqrt{\fbox{シスセ}\ }\ }\ }}{\fbox{ソ}} $$
である。ただし、$\mathrm{XY}$ で線分 $\mathrm{XY}$ の長さを表すものとする。
必要であれば以下の事実を用いてよい。
・実数 $a,b,c$(ただし $a\neq-64$ )について、$\displaystyle p=\frac{b+c-a^2}{a+64},q=64p+a^2-b$ とおくと、$x$ についての恒等式
$$ 1024x^4+64ax^3+bx^2+2cx+p^2-q=(32x^2+ax+p)^2-q(x-1)^2 $$
が成り立つ(これは、右辺を展開して係数比較することで簡単に確かめられる)。
ア〜ソには、0から9までの数字または「-」(マイナス)が入る。 文字列「アイウエオカキクケコサシスセソ」を半角で1行目に入力せよ。 ただし、分数はそれ以上約分できない形で、かつ根号の中身が最小になるように答えよ。
3点A(-1,-2),B(2,1),C(𝑝+𝑞,𝑝-𝑞) に対して実数𝑝,𝑞が 𝑝²+𝑞²+𝑝+𝑞≦3/2を満たすとする。 このとき3点A,B,Cを通る上に凸な二次関数が 存在しないような点Cの取りうる範囲の面積を求めよ。
半角で答えのみ。分母に無理数が来る時は有理化し最も簡単な形で解答してください。 回答の際に一文字目に計算記号が来ないようにしてください。 (ダメな例)-2√2+π→(良い例)π-2√2 また掛け算の記号は省略し分数はa/bの形で表すこと。根号→√ 円周率→π ネイピア数→e
$x,y$を整数、$p$を素数とする。 $x^2-xy+y^2=2^p$を満たす組$(x,y,p)$をすべて求めよ。
$x+y+p$の値としてありうる値の総和を半角数字で入力してください。
$x$を$x^2+2ax+b=0$の解でない実数、$a,b$を$100$以下の正整数とする。 ある$a,b$に対して $$x^2+2ax+b-\frac{1}{x^2+2ax+b}$$ の最小値を$min(x)$とすると、この$min(x)$の値は、$a,b$の値によって変わる。$min(x)$が一意に定まり、かつその$min(x)$を最小にするような$a,b$の値をすべて求めよ。
追記:問題文を一部変更しました。
ありうる組$(a,b)$について、$a+b$の総和を半角数字で入力してください。
$p$ を $p \ge 5$ なる素数とする。集合 $G_p = {1, 2, \dots, p-1}$ の部分集合 $S$ が自己双対的であるとは、 $$a \in S \implies a^{-1} \pmod p \in S \quad \text{かつ} \quad a \in S \implies p-a \in S$$ が全ての $a \in S$ に対して成り立つことと定義する(ここで $a^{-1}$ は $\pmod p$ における $a$ の乗法逆元)。
$N_p$ を、$G_p$ の自己双対的な部分集合 $S$ の総数とする(空集合 $\emptyset$ も含む)。
$N_p = 32$ となるような素数 $p$ ($p \ge 5$) をすべて求めよ。
解を半角1スペースおきに小さい順に並べてください
半径21の扇形に図のように線を引きました。青い三角形の面積が213のとき、赤い線分の長さを求めてください。
※高校数学カテゴリに入れてますが、中学数学範囲での綺麗な解法をTwitterにて頂きました。是非考えてみてください。
解答は既約分数$\frac{\fbox{アイウ}}{\fbox{エ}}$となります。文字列「アイウエ」を解答してください。 ただし、$\fbox ア ~ \fbox エ$には$0$以上$9$以下の整数が入ります。
n を正の整数とし、$p$ を素数とする。$n!$ の素因数分解における $p$ の指数を $E_p(n!) = \sum_{k=1}^{\infty} \lfloor \frac{n}{p^k} \rfloor$ とする。
量 $Q_n$ を次のように定義する。 $$ Q_n = \sum_{p \le n} \left( \frac{n}{p-1} - E_p(n!) \right) \log p $$ ただし、和は $n$ 以下の全ての素数 $p$ を走り、$\log$ は自然対数とする。
次の極限値を求めよ。 $$ \lim_{n \to \infty} \frac{Q_n}{n} $$
ただし、オイラー・マスケロー二定数を $γ$ とする。
半角で
$(1)$ 方程式 $12x^2+4xy-21y^2=32x-32y+3$ の整数解 $(x,y)$ を求めよ. $(2)$ 不等式 $z^2\lt a(a+1)z-a^3$ の奇数解 $z$ が二つとなる実数 $a$ の範囲を求めよ.
$a^{xy}$ がとりうる整数の和を半角数字で入力してください.
互いに素な整数の辺 $a,b,l$(斜辺 $l$)を持つ直角三角形を考える。内接円の半径を $r$、周長を $L$、面積を $S$ とする。 $L^2=kS$ ($k$ は正の整数) を満たすとき、 全てのkの値を求めよ。
半角1スペースおきに小さい順に並べてください
半円と平行四辺形が図のように配置されています。赤い三角形の面積が3のとき、青い線分の長さを求めてください。 ※平行四辺形の一辺と半円は接する。
$$x=\fbox{ア}\sqrt{\fbox{イウ}-\fbox エ\sqrt{\fbox オ}}$$と表せるので、文字列 アイウエオ を解答してください。ただし、$\fbox ア~\fbox オ$には0以上9以下の整数が入ります。