次を満たす整数係数多項式の組 $(f,g)$ はいくつありますか? $$f(g(x))=x^6+1 0≦f(0),g(0)≦2025$$
条件を満たす組の個数を半角整数で $1$ 行目に入力してください。
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
$x,y$を整数、$p$を素数とする。 $x^2-xy+y^2=2^p$を満たす組$(x,y,p)$をすべて求めよ。
$x+y+p$の値としてありうる値の総和を半角数字で入力してください。
以下の $x$ に関する $100$ 次方程式の(重解を含む)$100$ 個の複素数解を $\alpha_1,\alpha_2,...,\alpha_{100}$ とします. $$x^{100}+x^{99}+2025x+12=0$$
このとき,以下の値を求めてください. $$\sum_{k=1}^{100} ({\alpha_k}^{100}+{\alpha_k}^{99})$$
整数で解答してください.
https://x.com/atwr0711/status/2000173940698927172?s=20 こちらの14番の問題と同じです.
以下の $x$ に関する $3$ 次方程式は相異なる $3$ 個の複素数解をもつので,それぞれの解を $\alpha,\beta,\gamma$ とします. $$x^3-2^{2025}x^2+24x-2^{2023}=0$$
このとき,以下の値は整数になるので,その正の約数の個数を求めてください. $$(\alpha+\beta)(\beta+\gamma)(\gamma+\alpha)$$
https://x.com/atwr0711/status/2000173940698927172?s=20 こちらの31番の問題と同じです.
四角形 $ABCD$ と三角形 $XYZ$ は以下の条件を満たします. $$AD=505, \hspace{1pc} BC=507, \hspace{1pc} AB=CD, \hspace{1pc} \angle ABC=60^\circ, \hspace{1pc} \angle DCB=80^\circ$$ $$YZ=1, \hspace{1pc} XY=XZ, \hspace{1pc} \angle YXZ=40^\circ$$ このとき, 四角形 $ABCD$ の面積は三角形 $XYZ$ の面積の何倍ですか.
答えは正の整数値となるので, その整数値を半角で入力してください.
追記: 若干日本語がおかしかったため編集しました. 解答には影響はないと思われます. 一応ヒント2に元の問題文を残してあります. 以上, よろしくお願いします.
${}$ 西暦2026年問題第6弾です。問題文こそ集合の言葉を使っていますが、そちらは本質ではありません。整数問題としてお楽しみください。
${}$ 解答は求める最小値をそのまま半角で入力してください。 (例)最小値が106 → $\color{blue}{106}$
${}$ 西暦2026年問題第8弾です。$2026$を$2^{26}$とする強引な西暦問題となりました。ついでに書くと、どこかに類題がありそうで、その点でも恐れています。皆さんはそんな僕の恐れなど気にせずにお楽しみください。
${}$ 解答は1行目に$p_3$の値を、2行目に$p_4$の値を、それぞれ半角で入力してください。「$p_3=$」「$p_4=$」といった記載は不要です。 (例)$p_3=$108、$p_4=$2026 → 《1行目》$\color{blue}{108}$、《2行目》$\color{blue}{2026}$
ab-3c-d^2 = e …① 3cd+d^2+e^2 = abd …② a+8+2d = b …③ a+11+e = b+3 …④ を全て満たす自然数の組(a,b,c,d,e)のうち、a+b+c+d+eが最小となるようなものを求めよ。
a+b+c+d+e の値を半角数字で
nを一桁の自然数とする。xについての多項式、
∫(0→x) (t^3 + {1/√(n-2)(n-3)(n-4)} t^-2 +1)^n dt
について、x^6の係数を自然数にするようなnを求めなさい。
半角で一桁の数字を入力してください。
nを4以上1000以下の整数とする。1000以下の正整数の組$(a_1,a_2,…,a_n)$であって、$$a_1=\frac{a_2+a_3+a_4}{3},a_2=\frac{a_3+a_4+a_5}{3},…,a_{n-1}=\frac{a_n+a_1+a_2}{3},a_n=\frac{a_1+a_2+a_3}{3}$$を満たすものの個数を求めよ。
半角数字で解答してください。
3点A(-1,-2),B(2,1),C(𝑝+𝑞,𝑝-𝑞) に対して実数𝑝,𝑞が 𝑝²+𝑞²+𝑝+𝑞≦3/2を満たすとする。 このとき3点A,B,Cを通る上に凸な二次関数が 存在しないような点Cの取りうる範囲の面積を求めよ。
半角で答えのみ。分母に無理数が来る時は有理化し最も簡単な形で解答してください。 回答の際に一文字目に計算記号が来ないようにしてください。 (ダメな例)-2√2+π→(良い例)π-2√2 また掛け算の記号は省略し分数はa/bの形で表すこと。根号→√ 円周率→π ネイピア数→e
$4$ 点 $\mathrm{A,B,C,D}$ が $\mathrm{AB=BC=CD}=1,\mathrm{DA}=2$ を満たし、さらに線分 $\mathrm{BC}$ と線分 $\mathrm{DA}$ が点 $\mathrm{P}$ で交わっている。線分 $\mathrm{AP}$ の長さが最大となるとき、
$$ \mathrm{AC}=\frac{\sqrt{\fbox{アイ}-\sqrt{\fbox{ウエオ}\ }+\sqrt{\fbox{カキクケ}+\fbox{コサ} \sqrt{\fbox{シスセ}\ }\ }\ }}{\fbox{ソ}} $$
である。ただし、$\mathrm{XY}$ で線分 $\mathrm{XY}$ の長さを表すものとする。
必要であれば以下の事実を用いてよい。
・実数 $a,b,c$(ただし $a\neq-64$ )について、$\displaystyle p=\frac{b+c-a^2}{a+64},q=64p+a^2-b$ とおくと、$x$ についての恒等式
$$ 1024x^4+64ax^3+bx^2+2cx+p^2-q=(32x^2+ax+p)^2-q(x-1)^2 $$
が成り立つ(これは、右辺を展開して係数比較することで簡単に確かめられる)。
ア〜ソには、0から9までの数字または「-」(マイナス)が入る。 文字列「アイウエオカキクケコサシスセソ」を半角で1行目に入力せよ。 ただし、分数はそれ以上約分できない形で、かつ根号の中身が最小になるように答えよ。
${}$ 西暦2026年問題第9弾です。24時を回って、日付が変わってしまいました。僕の西暦問題では珍しく代数・解析分野からの出題となっています。さらにいうと、前回の問題と同じく$2026$を$2+2\sqrt{6}$と解釈する強引さを見せています。そんな珍しさと強引さを味わいながらお楽しみください。
${}$ 解答は求める解の個数をそのまま半角で入力してください。 (例)109個 → $\color{blue}{109}$ なお、解が存在しない(不能)場合は$\color{blue}{0}$と、解が無数に存在する(不定)場合は$\color{blue}{\mathrm{inf}}$と入力してください。