問題文
3点A(-1,-2),B(2,1),C(𝑝+𝑞,𝑝-𝑞)
に対して実数𝑝,𝑞が
𝑝²+𝑞²+𝑝+𝑞≦3/2を満たすとする。
このとき3点A,B,Cを通る上に凸な二次関数が
存在しないような点Cの取りうる範囲の面積を求めよ。
解答形式
半角で答えのみ。分母に無理数が来る時は有理化し最も簡単な形で解答してください。
回答の際に一文字目に計算記号が来ないようにしてください。
(ダメな例)-2√2+π→(良い例)π-2√2
また掛け算の記号は省略し分数はa/bの形で表すこと。根号→√ 円周率→π ネイピア数→e