$\boxed{1}, \boxed{-1}, \boxed{1+i}, \boxed{1-i}$ の4枚のカードから無作為に1枚取り出して,書かれている数字を記録して,元に戻す操作を $n$ 回繰り返す。$k$ 回目に取り出したカードに書かれてる数を $X_k$ とする。
$\displaystyle P_n=\prod_{k=1}^{n} X_k$ が正の実数になる確率を $n$ を用いて表してください。
$n$ が奇数のとき
$P_n=\dfrac 1a\left(b+\left(\dfrac dc\right)^{n-1}\right)$
$n$ が偶数のとき
$P_n=\displaystyle\dfrac 1e\left(f+\left(\dfrac hg\right)^{n-1}
+\left(\dfrac ji\right)^{\frac{ln}{k}-m}\right)$
と表せるので,$a+b+c+d+e+f+g+h+i+j+k+l+m$ の値を入力してください。
※$n$ が紛らわしいので注意