[C] からくり箱

masorata 自動ジャッジ 難易度: 数学 > 高校数学
2020年12月5日18:00 正解数: 6 / 解答数: 8 (正答率: 75%) ギブアップ不可
関数方程式 まそらた杯
この問題はコンテスト「第2回まそらた杯」の問題です。

問題文

正の実数に対して定義され正の実数値をとる関数 $f$ が、任意の正の実数 $x,y$ に対して

$$
f\left(\frac{x+y+1}{xy}\right)=\frac{f(x)f(y)}{x+y+1}
$$

を満たすとき

$$
f\left(\frac{11}{21}\right) = \frac{\fbox{アイウエ}}{\fbox{オカキ}}
$$

である。

解答形式

ア〜キには、0から9までの数字が入る。
文字列「アイウエオカキ」を半角で1行目に入力せよ。
ただし、それ以上約分できない形で答えよ。


スポンサーリンク

解答提出

この問題は自動ジャッジの問題です。 解答形式が指定されていればそれにしたがって解答してください。

Sign in with Google Discordでログイン パスワードでログイン

ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。

または


おすすめ問題

この問題を解いた人はこんな問題も解いています


問題文

以下の文がそれぞれ正しくなるように、空欄に $0$ から $9$ までの数字を埋めよ。ただし、同じ文字の空欄には同じ文字が入る。

(1)数列 $\fbox{ア}, \fbox{イ}, \fbox{ウ}, \fbox{エ},\fbox{オ}$ には、
$0$ が $\fbox{ア}$ 回、$1$ が $\fbox{イ}$ 回、$2$ が $\fbox{ウ}$ 回、$3$ が $\fbox{エ}$ 回、$4$ が $\fbox{オ}$ 回、それぞれ現れる。

(2)数列 $\fbox{カ}, \fbox{キ}, \fbox{ク}, \fbox{ケ}, \fbox{コ}, \fbox{サ}, \fbox{シ}, \fbox{ス}, \fbox{セ}, \fbox{ソ}$ には、
$0$ が $\fbox{カ}$ 回、$1$ が $\fbox{キ}$ 回、$2$ が $\fbox{ク}$ 回、$3$ が $\fbox{ケ}$ 回、$4$ が $\fbox{コ}$ 回、
$5$ が $\fbox{サ}$ 回、$6$ が $\fbox{シ}$ 回、$7$ が $\fbox{ス}$ 回、$8$ が $\fbox{セ}$ 回、$9$ が $\fbox{ソ}$ 回、それぞれ現れる。

解答形式

ア〜ソには、0から9までの数字が入る。
(1)の答えとして、文字列「アイウエオ」を半角で1行目に入力せよ。
(2)の答えとして、文字列「カキクケコサシスセソ」を半角で2行目に入力せよ。

12月前

18

問題文

(1)$\displaystyle \tan\theta=\frac{1}{4}$ のとき、$\displaystyle \tan2\theta=\frac{\fbox{ア}}{\fbox{イウ}}$ である。

(2)連立方程式

$$
\begin{cases}
x_1=x_2(2+x_1x_2) \\
x_2=x_3(2+x_2x_3) \\
x_3=x_4(2+x_3x_4) \\
x_4=x_1(2+x_4x_1)
\end{cases}
$$

を満たす実数 $(x_1,x_2,x_3,x_4)$ の組は全部で $\fbox{エオ}$ 個あり、そのうち $\tan20^\circ < x_1 < \tan80^\circ$ を満たすような組は $\fbox{カ}$ 個ある。

解答形式

ア〜カには、0から9までの数字が入る。
(1)の答えとして、文字列「アイウ」を半角で1行目に入力せよ。
(2)の答えとして、文字列「エオカ」を半角で1行目に入力せよ。

12月前

3

問題文

しずかちゃんがシャワーを浴びようとしてお湯を出し始めた。はじめのお湯の温度は $35$℃で、お湯を出し始めてから $n$ 秒後のお湯の温度は $T_n$℃であるとする。

しずかちゃんは非常に温度に敏感で、シャワーの温度をちょうど $40$℃に設定しないと落ち着かない。そこで、しずかちゃんはお湯を出し始めてから $n=1,2,3...$ 秒後に、シャワーの温度がちょうど $a(40-T_n)$℃だけ上がるように温度調節レバーを操作する。ここで、$a$ は正の定数である。なお、$T_n>40$ のときは $a(T_n-40)$℃だけ温度が「下がる」ように操作するものとする。

$N$ を自然数の定数として、温度調節レバーの操作がお湯の温度に反映されるまでちょうど $N$ 秒かかる。すなわち、しずかちゃんがお湯を出し始めてから $n$ 秒後に温度調節レバーを操作したとき、 はじめから $n+N$ 秒後と $n+N+1$ 秒後の間にシャワーの温度が $a(40-T_n)$℃だけ上昇する。

さて、$\displaystyle \lim_{n \to \infty} T_n=40$ であれば、しずかちゃんは十分な時間が経つと快適にシャワーを浴びることができる。$a$ が十分小さければ、すなわち温度をできるだけ少しづつ上げていけば、直感的にはこのことは可能である。では、具体的には $a$ はどれほど小さい必要があるのだろうか。そこで、$\displaystyle \lim_{n \to \infty} T_n=40$ が成り立たないような $a$ の最小値を $a_c$ とおく。以下の空欄を埋めよ。

(1) $N=1$ のとき、$a_c=\fbox{ア}$ である。

(2) $N=2$ のとき、$\displaystyle a_c=\frac{\fbox{イウ}+\sqrt{\fbox{エ}}}{\fbox{オ}}$ である。

解答形式

ア〜オには、0から9までの数字または「-」(マイナス)が入る。
(1)の答えとして「ア」にあてはまる数を半角で1行目に入力せよ。
(2)の答えとして、文字列「イウエオ」を半角で2行目に入力せよ。

[C]線形代数のよくある問題

fusshi 自動ジャッジ 難易度:
14月前

3

問題文

行列$A$を次で定義する。
$$
A=
\begin{pmatrix}
6& -3 & -7 & 0 & 0 & 0\\
-1 & 2 & 1 & 0 & 0 & 0\\
5& -3 & -6 & 0 & 0 & 0\\
0& 0 & 0 & 1 & 2 & 1\\
0& 0 & 0 & -1 & 4 & 1\\
0& 0 & 0 & 2 & -4 & 0\\
\end{pmatrix}
$$
このとき次の実線形空間の次元を求めよ。
$$
V=\{X\in M_{6}(\mathbb{R})\mid AX=XA\}
$$
ただし、$M_{6}(\mathbb{R})$とは6行6列の実正方行列全体の集合である。

解答形式

半角数字で答えよ。

[F] 歪んだバランス

masorata 自動ジャッジ 難易度:
13月前

9

問題文

相異なる正の実数 $a,b,c$ が $ab^2(1-b)=bc^2(1-c)=ca^2(1-a)$ を満たして動くとき、$(1-a)(1-b)(1-c)$ の最大値は

$$
\displaystyle \frac{\fbox{アイウ}+\fbox{エオ}\sqrt{\fbox{カ}}}{\fbox{キクケ}}
$$

である。

解答形式

ア〜ケには、0から9までの数字、または-(マイナス)が入る。文字列「アイウエオカキク」を全て半角で1行目に入力せよ。ただし、それ以上約分できない形で、かつ根号の中身が最小になるように答えよ。


問題文

$n$ を正の整数とする。$f(n)=\sqrt{n^4+2n+61\ }$ が整数となるような $n$ を $1$ つ選び、そのときの $f(n)$ の値を答えよ。

なお、$f(n)$ が整数とならない場合や、答えた $f(n)$ の値が正しくない場合は不正解とする。

正解した場合は、まず解説を見よ。また、他のユーザーの回答も見てみよ。

解答形式

あなたが選んだ $n$ における $f(n)$ の値を半角数字で1行目に入力せよ。

expもどき

masorata 自動ジャッジ 難易度:
17月前

7

問題文

すべての複素数に対して定義され、複素数の値をとる関数 $f(z)$ は、すべての複素数 $z,w$ について

$$
f(z+w)=f(z)f(w)+zw ...(*)
$$

をみたすとする。以下の問いに答えよ。

⑴ すべての複素数 $z$ について $f(2)f(z)+z = f(1)f(z+1)+1$ が成り立つことを示せ。
⑵ $(*)$ をみたすような $f(z)$ をすべて求めよ。

解答形式

⑵を解答したうえで、以下の空欄ア~エに当てはまる0~9の整数を順に並べて4桁の半角数字「アイウエ」を入力せよ。根号の中身が最小になるように解答せよ。

$|f(5+11i)|$ のとりうる値のうち最大のものは$(アイ)$, 最小のものは$(ウ)\sqrt{(エ)}$ である。

13月前

12

問題文

$a$ を実数の定数とする。正の実数値をとる関数 $y(x)$ は何回でも微分可能で、

$$
\begin{cases}
2yy''''+(y'')^2=2y'y'''+a & (x \in {\mathbb R})\\
y'(0)=y''(0)=0 \\
y'''(0)=y''''(0)=1
\end{cases}
$$

を満たすとする。$\displaystyle a=\frac{50}{17}$ のとき、($x$ が実数全体を動くときの)$y(x)$ の最小値は $\displaystyle \frac{\fbox{アイ}}{\fbox{ウエオ}}$ である。

解答形式

ア〜オには、0から9までの数字が入る。
文字列「アイウエオ」をすべて半角で1行目に入力せよ。
ただし、それ以上約分できない形で答えよ。

13月前

25

問題文

$f(x)=-16x^3+24x^2-9x+1$ とおく。以下の問いに答えよ。

⑴ 以下の式が $\theta$ の恒等式になるように空欄を埋めよ。なお、同じ文字の空欄には同じ数が入る。

$$
f\left( \frac{\fbox{ア}+\sin\theta}{\fbox{イ}}\right)=\frac{\fbox{ア}+\sin(\fbox{ウ}\theta)}{\fbox{イ}}
$$

⑵ 次の定積分を求めよ。
$$
\int_ {0.5} ^{0.75} f(f(f(x))) dx = \frac{\fbox{エオカ}}{\fbox{キクケコ}}
$$

解答形式

ア〜コには、0から9までの数字が入る。
⑴の答えとして、文字列「アイウ」をすべて半角で1行目に入力せよ。
⑵の答えとして、文字列「エオカキクケコ」をすべて半角で2行目に入力せよ。
ただし、分数はそれ以上約分できない形で答えよ。

[E] minimum value (hard)

okapin 自動ジャッジ 難易度:
13月前

5

問題文

$a,b$を$a>1,b>1$を満たす実数とする。
$\theta$が$0\leq\theta<2\pi$の範囲を動くとき$f(\theta)=\sqrt{a^2-2a\cos\theta+1}+\sqrt{b^2-2b\sin\theta+1}$の最小値が$\sqrt{a^2+b^2}$となるような$(a,b)$の存在範囲を$ab$平面に図示したとき、その領域の面積を求めよ。

解答形式

整数または既約分数で答えてください。
半角で入力してください。

13月前

31

問題文

$7^{7^7}$ を $777$ で割ったあまりを求めよ。

(注:$7^{7^7}$ は「 $7$ の「 $7$ の $7$ 乗」乗」を表すものとする。)

解答形式

$0$ 以上 $776$ 以下の整数を、半角数字で1行目に入力せよ。

常に無理数か?

hinu 自動ジャッジ 難易度:
18月前

41

問題

(1) $a,b$ を整数でない正の有理数とする。 $a^b$ は常に無理数か。

(2) $a$ を整数でない正の有理数とする。 $a^a$ は常に無理数か。

(3) $a,b$ を正の無理数とする。 $a^b$ は常に無理数か。

(4) $a$ を正の無理数とする。 $a^a$ は常に無理数か。

解答方法

解答欄に改行区切りで O (オー)または X (エックス)を記述せよ。正解判定は各行に対して行われ、完答のみ正解となる。