[B] Symmetric Concavity

masorata 自動ジャッジ 難易度: 数学 > 大学数学
2024年2月16日21:00 正解数: 3 / 解答数: 3 (正答率: 100%) ギブアップ不可
微積分 不等式 MCA
この問題はコンテスト「MCA the 1st」の問題です。

解説

$\displaystyle f\left(\frac{1}{x}\right)=\frac{f(x)}{x} $ の両辺を $x$ で微分すると$\displaystyle -\frac{1}{x^2}f'\left(\frac{1}{x}\right)=\frac{xf'(x)-f(x)}{x^2} $ となる。
これに $x=1$ を代入して$-f'(1)=f'(1)-f(1)$、$f(1)=1$と併せて$\displaystyle f'(1)=\frac{1}{2}$を得る。

(1)$\displaystyle \frac{d^2}{dx^2} f(x)\leq 0$より、$f(x)$は上に凸である。よって凸不等式から
$$
f(x)\leq f(1)+f'(1)(x-1)=\frac{x+1}{2}
$$
であり、両辺を$x\in[1/2,2]$で積分することで
$$
\int_{\frac{1}{2}}^{2}f(x)dx \leq \int_{\frac{1}{2}}^{2} \frac{x+1}{2} dx =\frac{27}{16}
$$
が得られる。$\displaystyle f(x)=\frac{x+1}{2}$ は問題の条件を満たす関数であるから、$\displaystyle I [f]=\int_{\frac{1}{2}}^{2}f(x)dx$ の最大値は$\displaystyle \frac{27}{16}$ であり、$\fbox{アイ}=27,\fbox{ウエ}=16$ である。

(2)$\displaystyle \frac{d^2}{dx^2} \left( \frac{1}{f\left(\frac{1}{x}\right)} \right) \leq 0$より、$\displaystyle g(x):=\frac{1}{f\left(\frac{1}{x}\right)}$は上に凸である。よって凸不等式から
$$
g(x)\leq g(1)+g'(1)(x-1)=\frac{x+1}{2}
$$
であり、$f(x)$の式に戻すと
$$
f(x)\geq \frac{2x}{x+1}
$$
が得られる。この両辺を$x\in[1/2,2]$で積分することで
$$
\int_{\frac{1}{2}}^{2}f(x)dx \geq \int_{\frac{1}{2}}^{2} \frac{2x}{x+1} dx =3-2\log2
$$
が得られる。$\displaystyle f(x)=\frac{2x}{x+1}$ もまた問題の条件を満たす関数であるから、$\displaystyle I [f]=\int_{\frac{1}{2}}^{2}f(x)dx$ の最小値は $3-2\log2$ であり、$\fbox{オ}=3,\fbox{カ}=2,\fbox{キ}=2$ である。

補足

題意を満たす$f$としては、他に $f(x)=\sqrt{x}$ や $\displaystyle f(x)=\frac{x-1}{\log x}$(ただし$f(1)=1$とする)などがある。本問は、関数の作用素単調性が背景にある。
参考: 情報幾何学の基礎 数理情報科学シリーズ29 (藤原彰夫著,牧野書店)


おすすめ問題

この問題を解いた人はこんな問題も解いています

[C] Soft Spring

masorata 自動ジャッジ 難易度:
9月前

3

問題文

$a>0$ を定数とする。$t\geq0$ で定義された実数値関数 $x(t)$ について、以下の微分方程式の初期値問題を考える:

$$
\begin{cases}
\displaystyle x''(t)=-\frac{x(t)}{(1+\lbrace x(t) \rbrace^2)^2} \ \ \ (t\geq0)\\
\displaystyle x(0)=\frac{\sqrt2}{4}, \ x'(0)=a
\end{cases}
$$

(1)$\displaystyle \lim_{t \to +\infty}x(t)=+\infty$ となる $a$ の範囲は、$\displaystyle a \geq \frac {\fbox{ア}\sqrt{\fbox{イ}}}{\fbox{ウ}}$ である。
(2)$\displaystyle a = \frac {\fbox{ア}\sqrt{\fbox{イ}}}{\fbox{ウ}}$ のとき、$\displaystyle x(t)=\frac{3}{4}$ となる $t$ の値は $\displaystyle t = \frac {\fbox{エ}}{\fbox{オカ}}+\frac{\fbox{キ}}{\fbox{ク}}\log2$ である。ただし $\log$ は自然対数とする。

解答形式

ア〜クには、0から9までの数字が入る。同じ文字の空欄には同じ数字が入る。
(1)の答えとして、文字列「アイウ」を半角で1行目に入力せよ。
(2)の答えとして、文字列「エオカキク」を半角で2行目に入力せよ。
ただし、分数はそれ以上約分できない形で、根号の中身が最小になるように答えよ。


問題文

$N$ を正の整数、$c>0$ を定数とする。実数の組 $(t_1,t_2,\ldots,t_N)$ に対して関数

$$
f_n(t_1,t_2,\ldots,t_N)=t_n(1-t_n)\left(c(1+t_n)-\sum_{i=1}^{N}t_i\right) \ \ \ (n=1,2,\ldots ,N)
$$

を考える。また、$N\times N$ 行列 $J(t_1,t_2,\ldots,t_N)$ を

$$
J(t_1,t_2,\ldots,t_N) =
\left(
\begin{array}{ccc}
\frac{\partial f_1}{\partial t_1} & \cdots & \frac{\partial f_1}{\partial t_N} \\
\vdots & \ddots & \vdots \\
\frac{\partial f_N}{\partial t_1} & \cdots & \frac{\partial f_N}{\partial t_N}
\end{array}\right)
$$

と定義する。

$N=1000,\ \displaystyle{c=\frac{1000}{1.23}}$ として、以下の問いに答えよ。

(1)$1000$個の実数の組 $(x_1,x_2,\ldots,x_{1000})$ であって、$x_1\leq x_2 \leq \ldots \leq x_{1000} $ かつ

$$
f_n(x_1,x_2,\ldots,x_{1000})=0\ \ \ (n=1,2,\ldots ,1000)
$$

を満たすものはいくつあるか。

(2)(1)で考えた組のうち、$J(x_1,x_2,\ldots,x_{1000})$ の固有値の実部がすべて負であるようなものはいくつあるか。

解答形式

(1)の答えを半角数字で1行目に入力せよ。
(2)の答えを半角数字で2行目に入力せよ。

[A] Triple Matrix

masorata 自動ジャッジ 難易度:
9月前

16

問題文

正の整数 $a,b,c$ が

$$
\begin{pmatrix} 1 & 1 & 0\\ 0 & 1 & 0 \\ 0 & 0 & 1\end{pmatrix}^a
\begin{pmatrix} 1 & 0 & 0\\ 0 & 1 & 1 \\ 0 & 0 & 1\end{pmatrix}^b
\begin{pmatrix} 1 & 0 & 1\\ 0 & 1 & 0 \\ 0 & 0 & 1\end{pmatrix}^c
=\begin{pmatrix} 1 & 20 & 2024\\ 0 & 1 & 24 \\ 0 & 0 & 1\end{pmatrix}
$$

を満たすとき、$a+b+c$ の値を求めよ。

解答形式

半角数字で1行目に入力せよ。

hinu積分02

hinu 採点者ジャッジ 難易度:
4年前

1

問題

(1) 定積分

$$
\int_0^1 \frac{x\log x}{(x+1)^2}dx
$$

の値を求めよ。

(2) 関数列 ${f_n(x)}$ を

$$
f_{n+1}(x)=(x^x)^{f_n(x)},\quad f_1(x)=x^x
$$

で定める。定積分

$$
\int_0^1(x^x)^{{(x^x)}^{(x^x)\cdots}}dx:=\int_0^1\lim_{n\to \infty} f_n(x)\ dx
$$

の値を求めよ。ただしテトレーション $x^{{x^{x\cdots}}}$ は底 $x$ が $e^{-e}<x<e^{1/e}$ のとき収束することは証明せずに用いて良い。

備考

この問題の正解判定は出題者により手動で行われるため、判定までに時間がかかることがある。

有名な解法を使いたい

Kinmokusei 自動ジャッジ 難易度:
3年前

2

問題文

次の文章の空欄を埋めてください。ただし、以下の文章全てにおいて$x>0$とします。
$(1.1)$
$f(x)=x+4x^{-2}$の最小値を、微分を用いて求めよう。まず、
$$f'(x)=\fbox ア-\frac{\fbox イ}{x^3}$$である。$f'(x)$の符号は$x=\fbox ウ$の前後でのみ変化するから、$f(x)$は$x=\fbox ウ$で極値をとり、さらにそれが最小値であることが分かる。したがって、$f(x)$の最小値は$\fbox エ$である。

この問題は$(1.2)$に示すような解法が知られている。

$(1.2)$
相加相乗平均の関係式を用いて$f(x)$の最小値を求める。$a_1+a_2=1$を満たす$0$以上の実数$a_1,a_2$を用いて、
$$f(x)=a_1x+a_2x+\frac{4}{x^2}\ge3\left(a_1x\cdot a_2x\cdot\frac{4}{x^2}\right)^{\frac 13}=3(4a_1a_2)^{\frac 13}$$とする。いかなる$a_1,a_2$の組に対してもこの不等式は成立する。一方で、等号を成立させる$x$が存在するには、$a_1x=a_2x$でなければならないから、$a_1=a_2$となる。このとき、等号成立条件
$$a_1x=a_2x=\frac{4}{x^2}$$を満たす$x$は存在して、その値は$x=\fbox ウ$で、不等式の右辺の値は$\fbox エ$となり、最小値が得られる。

$(2)$
$g(x)=x+3x^{-1}+x^{-2}$の最小値を、$(1.2)$の解法に準じて求めよう。
$(1.2)$中の議論と同様に、等号成立条件を考えれば、同類項の係数(前問では$a_1,a_2$にあたる)が異なってはならないと言える。したがって、$3$つの自然数$b_1,b_2,b_3$を用いて、$$g(x)=b_1\cdot \frac{x}{b_1}+b_2\cdot\frac{3}{b_2x}+b_3\cdot\frac{1}{b_3x^2}$$と考えることにする(即ち、$b_1$個の$x/b_1$、$b_2$個の$3/b_2x$、$b_3$個の$1/b_3x^2$の和と考える)。相加相乗平均の関係式を適用したときに、累乗根の中身が定数となるには、$b_1=\fbox オb_2+\fbox カb_3$であればよい。等号成立条件は$$\frac{x}{b_1}=\frac{3}{b_2x}=\frac{1}{b_3x^2}$$である。中辺と最右辺の等式から、$x=b_2/(3b_3)$であり、これと最左辺・最右辺の等式から、$$\frac{b_2}{3b_3\left(\fbox オb_2+\fbox カb_3\right)}=\frac{9b_3}{b_2^2}$$整理して、$$b_2^3-\fbox{キク}b_2b_3^2-\fbox{ケコ}b_3^3=0$$この式を解くと、$b_2/b_3=\fbox サ/\fbox シ$を得られるので、$b_1:b_2:b_3=\fbox ス:\fbox セ:\fbox ソ$であれば良いことが分かる。これより、$$g(x)\ge\left(b_1+b_2+b_3\right)\left(\left(\frac{x}{b_1}\right)^{b_1}\left(\frac{3}{b_2x}\right)^{b_2}\left(\frac{1}{b_3x^2}\right)^{b_3}\right)^{\frac{1}{b_1+b_2+b_3}}=\frac{\fbox{タチ}}{\fbox ツ}$$であり、$x=\fbox テ$で等号が成立して、最小値となる。

解答形式(要注意!)

以下のこと(特に2つ目)に注意して解答してください。

・$\fbox ア~\fbox テ$には$0$以上$9$以下の整数が入ります。
・式の係数・分母の空欄$\left(\fbox オ・\fbox カ・\fbox シ・\fbox ツ\right)$には$1$が入る可能性もあります。
・$\fbox ス~\fbox ソ$は、$\fbox ス+\fbox セ+\fbox ソ$が最小となるようにしてください。また、分数は既約分数にしてください。

文字列アイウエを$1$行目
文字列オカキクケコを$2$行目
文字列サシスセソを$3$行目
文字列タチツテを$4$行目
に入力して解答してください。

絶対値(4)

y 自動ジャッジ 難易度:
8月前

4

$$
|tan2250°・cos1800°・sin1200°|\\を求めて下さい。
$$
$$
(1)\frac{1}{2}(2)\frac{\sqrt{3}}{2}(3)1(4)2
$$

円周率 1

hinu ジャッジなし 難易度:
4年前

4

問題文

$\pi$ が $\dfrac{1000\pi}{1001}\risingdotseq 3.13845\cdots$ よりも大きいことを示せ

Roly Poly

halphy 自動ジャッジ 難易度:
4年前

2

問題文

$m$ と $n$ を互いに素な自然数とします.実数係数多項式 $f(x)$ が次の性質をもっているとき,$f(x)$ を $m,n$-生成の多項式と呼ぶことにします.

  • 性質:すべての実数係数多項式 $g(x)$に対して,$f(x)g(x)=h(x^m, x^n)$ となるような実数係数の2変数多項式 $h(x,y)$ が存在する.

$x^k$ がすべての $10,n$-生成の多項式を割り切るような最大の自然数 $k$ は


です.ただし,単項式も多項式に含まれるとします.

解答形式

センター試験方式です.ア,イ,ウにはそれぞれ 0,1,2,3,4,5,6,7,8,9 および -,a,b,c,d のいずれか1文字が当てはまります.ア,イ,ウに 1, 2, 3 が当てはまるなら,123 と回答してください.


問題文

以下の漸化式で与えられる数列${a_n},{b_n}$を考える。ただし、$n$は非負整数であるとし、${a_n}$の初項は$a_0=1$とする。
$\displaystyle a_{n+1}=\sum_{k=0}^na_ka_{n-k} , \displaystyle b_{n+1}=\sum_{k=0}^n (k+1)a_ka_{n-k}$
(1)$b_n$を$a_n$で表わせ。
(2)$\displaystyle a_{n+1}=\frac{2(2n+1)}{n+2}a_n$を証明せよ。
(3)それぞれの数列の一般項$a_n,b_n$を求めよ。
(4)$\displaystyle \lim_{n \to \infty} \sqrt[n]{a_n}$を求めよ。ただし$\displaystyle\lim_{n \to \infty} \frac{\log n}{n}=\lim_{n \to \infty} \frac{\log(n+1)}{n}=0$を証明無しで用いても良い。

解答形式

(4)の答えを半角数字またはTeXで入力してください。
(1)~(3)についてはお手持ちの紙に解答し、解説を確認ください。

4次関数の性質

zyogamaya 自動ジャッジ 難易度:
3年前

2

問題文

4次関数のグラフ$C:y=f(x)$は2つの変曲点$\mathrm{P},\mathrm{Q}$をもち、1本の複接線が引けて、異なる2点$\mathrm{A}(\alpha,f(\alpha)),\mathrm{B}(\beta,f(\beta))$が接点となる。また$f(x)$の4次の係数は1である。このとき、$\displaystyle\frac{d^3}{dx^3}f(x)=0$の解を$x=\gamma$、$\mathrm{C}(\gamma,f(\gamma))$、複接線を$l_1$、直線$\mathrm{PQ}$を$l_2$、$C$上の点$\mathrm{C}$における接線を$l_3$、$l_2$と$C$の交点のうち$\mathrm{P},\mathrm{Q}$と異なる点をそれぞれ$\mathrm{R},\mathrm{S}$、$l_3$と$C$の交点のうち$\mathrm{C}$と異なる点をそれぞれ$\mathrm{D},\mathrm{E}$とおく。ただし$x$座標について、$\mathrm{A}$より$\mathrm{B}$、$\mathrm{P}$より$\mathrm{Q}$、$\mathrm{R}$より$\mathrm{S}$、$\mathrm{D}$より$\mathrm{E}$の方が大きいとする。

(1)直線$l_1,l_2,l_3$は互いに平行であることを示せ。

(2)線分長の2乗比$\mathrm{AB}^2:\mathrm{PQ}^2$を求めよ。

(3)線分長の2乗比$\mathrm{RS}^2:\mathrm{DE}^2$を求めよ。

(4)直線$l_2$と$C$で囲まれる部分の面積$S$を$\alpha,\beta$で表わせ。

解答形式

(2),(3),(4)の答えはそれぞれ一桁の自然数a,b,c,d,e,f,g,h,i,jを用いて以下のように表されます。
センター、共通テスト形式で埋め、10桁の自然数abcdefghijを答えてください。
$\mathrm{AB}^2:\mathrm{PQ}^2=a:b$
$\mathrm{RS}^2:\mathrm{DE}^2=c:d$
$S=\displaystyle\frac{e\sqrt{f}}{ghi}(\beta-\alpha)^j$

絶対値(15)

y 自動ジャッジ 難易度:
7月前

3

$$
|\sqrt{m}^{2}|=log_216\\の解は、どれか(m>0)。
$$
$$
(1)4(2)3(3)2(4)1
$$

根号と指数

y 自動ジャッジ 難易度:
4月前

6

$$
\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{n^{-64}}}}}}}
$$