[A] Triple Matrix

masorata 自動ジャッジ 難易度: 数学 > 大学数学
2024年2月16日21:00 正解数: 9 / 解答数: 14 (正答率: 64.3%) ギブアップ不可
線形代数 MCA
この問題はコンテスト「MCA the 1st」の問題です。

問題文

正の整数 $a,b,c$ が

$$
\begin{pmatrix} 1 & 1 & 0\\ 0 & 1 & 0 \\ 0 & 0 & 1\end{pmatrix}^a
\begin{pmatrix} 1 & 0 & 0\\ 0 & 1 & 1 \\ 0 & 0 & 1\end{pmatrix}^b
\begin{pmatrix} 1 & 0 & 1\\ 0 & 1 & 0 \\ 0 & 0 & 1\end{pmatrix}^c
=\begin{pmatrix} 1 & 20 & 2024\\ 0 & 1 & 24 \\ 0 & 0 & 1\end{pmatrix}
$$

を満たすとき、$a+b+c$ の値を求めよ。

解答形式

半角数字で1行目に入力せよ。


ヒント1

行列
$$
\begin{pmatrix} 1 & x & y\\ 0 & 1 & z \\ 0 & 0 & 1\end{pmatrix}
$$

$$
\begin{pmatrix} 1 & 1 & 0\\ 0 & 1 & 0 \\ 0 & 0 & 1\end{pmatrix},
\begin{pmatrix} 1 & 0 & 0\\ 0 & 1 & 1 \\ 0 & 0 & 1\end{pmatrix},
\begin{pmatrix} 1 & 0 & 1\\ 0 & 1 & 0 \\ 0 & 0 & 1\end{pmatrix}
$$
を(左から)かけるとそれぞれどのようになるか計算してみよ。


スポンサーリンク

解答提出

この問題は自動ジャッジの問題です。 解答形式が指定されていればそれにしたがって解答してください。

Discordでログイン Sign in with Google パスワードでログイン

ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。

または


おすすめ問題

この問題を解いた人はこんな問題も解いています

最小値

matsukichi 自動ジャッジ 難易度:
3月前

4

問題文

$a\lt c$ なる実数 $a, b, c$ が
$$\sqrt{(1+a^2)(1+b^2)}=\dfrac{(b+c)(c-a)}{1+c^2}$$
をみたすとき,$(8a+13b+21c)^2$ の取りうる最小値を解答してください.

解答形式

半角数字で解答してください.

求値問題4

Kinmokusei 自動ジャッジ 難易度:
3年前

7

問題文

△ABCにおいて、垂心をH、外心をOとするとAB//HOであった。このとき、∠Cの角度としてあり得る値の範囲を求めてください。
ただし、OとHが一致する場合は除きます。

解答形式

∠Cの範囲は度数法で表すと、$(0°<)\alpha°<C<\beta°(<180°)$となります。
$\alpha+\beta$を半角数字で解答してください。

17月前

12

問題文

図の条件の下で、$AB^2+BC^2+CD^2+DA^2$ の値を求めてください。

解答形式

半角数字で解答してください。

二等分

okapin 自動ジャッジ 難易度:
3年前

21

問題文

中心$O$, 直径$AB$とする円の$A,B$以外の円周上の点$C$を取り, $\angle BAC=\theta \ (0^\circ<\theta <90^\circ)$ とする。
このとき, 線分$OD$が線分$AC$によって二等分されるような点$D$が円周上に取れるような$\theta$の取りうる範囲を求めよ。

解答形式

求める$\theta$の範囲は$a^\circ<\theta\leq b^\circ$となります。1行目に$a$, 2行目に$b$を半角数字で入力してください。

3月前

6

問題文

鋭角三角形ABCについて,外心をO,重心をG,垂心をH,内心をIとします.
$$AO=\dfrac{325}{24}, AH=\dfrac{125}{12}, AG=\sqrt{145}$$
であるとき,$AI$の2乗を答えてください.

解答形式

答えは非負整数なので非負整数値を入力してください.

求長問題5

Kinmokusei 自動ジャッジ 難易度:
3年前

15

問題文

※解答形式に注意!

図のように配置された3つの正三角形があります。青い線分の長さを求めてください。
ただし、赤、紫、緑の線分の長さはそれぞれ1,2,3で、隣り合う正三角形の間の角は30°です。

解答形式

答えは自然数$A,B$を用いて$A\sqrt{B}$の形に表せます。$A+B$を解答してください。
ただし、根号の中はできるだけ小さい自然数にしてください。

求面積問題16

Kinmokusei 自動ジャッジ 難易度:
3年前

7

問題文

図のように3つの正方形が配置されています。3つの線分の長さが図のように与えられたとき、緑の六角形の面積を求めてください。

解答形式

面積は、
$$
\fbox{アイ}+\frac{\fbox{ウエ}\sqrt{\fbox{オカ}}}{\fbox{キ}}
$$
となります。$\fbox ア~\fbox キ$には0以上9以下の整数が入ります。文字列「アイウエオカキ」を解答してください(「」は不要)。ただし、根号の中身や分数は最も簡単な形にしてください。

例$$
面積S=17+\frac{22\sqrt{52}}{8}\rightarrow 17+\frac{11\sqrt{13}}{2}\rightarrow 1711132 と解答
$$

昔作った漸化式

masorata 自動ジャッジ 難易度:
3月前

7

問題文

数列 $\{a_n \}$ $(n=1,2,...)$ が漸化式:

$$
a_1=2, \ \displaystyle a_{n+1}=\frac{5a_n+3\sqrt{a_n^2-4\ }}{4}\ \ \ (n=1,2,\ldots)
$$

を満たすとき、$\displaystyle a_7=\frac{\fbox{アイウエ}}{\fbox{オカ}}$ である。

解答形式

ア〜カには、0から9までの数字が入る。
文字列「アイウエオカ」をすべて半角で1行目に入力せよ。
ただし、それ以上約分できない形で答えよ。

No.01 展開と因数分解

Prime-Quest 自動ジャッジ 難易度:
3月前

4

問題

$(1)$ $4$ つの実数 $(10\pm\sqrt 2\pm 4\sqrt 3)^3+1$ の和と等しい整数の最大素因数を求めよ.
$(2)$ 方程式 $(2x^2-x)(2x^2-7x+6)=7$ の実数解 $x$ に対する $x^5-\dfrac{1}{x^5}$ の値を求めよ.

解答形式

$(1),(2)$ の和を半角数字で入力してください.

[B] Symmetric Concavity

masorata 自動ジャッジ 難易度:
2月前

2

問題文

関数 $f:(0,\infty)\to(0,\infty)$ は $C^2$級で、任意の $x>0$ に対して

$$
f(1)=1,\ \ f\left(\frac{1}{x}\right)=\frac{f(x)}{x},\ \ \frac{d^2}{dx^2} f(x)\leq 0,\ \ \frac{d^2}{dx^2} \left( \frac{1}{f\left(\frac{1}{x}\right)} \right) \leq 0
$$

をすべて満たすとする。このような $f$ に対し

$$
I [f]=\int_{\frac{1}{2}}^{2}f(x)dx
$$

を考える。

(1)$I[f]$ の最大値は $\displaystyle \frac{\fbox{アイ}}{\fbox{ウエ}}$ である。
(2)$I[f]$ の最小値は $\fbox{オ}-\fbox{カ}\log\fbox{キ}$ である。ただし $\log$ は自然対数である。

解答形式

ア〜カには、0から9までの数字が入る。
(1)の答えとして、文字列「アイウエ」をすべて半角で1行目に入力せよ。
(2)の答えとして、文字列「オカキ」をすべて半角で2行目に入力せよ。
ただし、対数の中身が最小となるように答えよ。

[C] Soft Spring

masorata 自動ジャッジ 難易度:
2月前

2

問題文

$a>0$ を定数とする。$t\geq0$ で定義された実数値関数 $x(t)$ について、以下の微分方程式の初期値問題を考える:

$$
\begin{cases}
\displaystyle x''(t)=-\frac{x(t)}{(1+\lbrace x(t) \rbrace^2)^2} \ \ \ (t\geq0)\\
\displaystyle x(0)=\frac{\sqrt2}{4}, \ x'(0)=a
\end{cases}
$$

(1)$\displaystyle \lim_{t \to +\infty}x(t)=+\infty$ となる $a$ の範囲は、$\displaystyle a \geq \frac {\fbox{ア}\sqrt{\fbox{イ}}}{\fbox{ウ}}$ である。
(2)$\displaystyle a = \frac {\fbox{ア}\sqrt{\fbox{イ}}}{\fbox{ウ}}$ のとき、$\displaystyle x(t)=\frac{3}{4}$ となる $t$ の値は $\displaystyle t = \frac {\fbox{エ}}{\fbox{オカ}}+\frac{\fbox{キ}}{\fbox{ク}}\log2$ である。ただし $\log$ は自然対数とする。

解答形式

ア〜クには、0から9までの数字が入る。同じ文字の空欄には同じ数字が入る。
(1)の答えとして、文字列「アイウ」を半角で1行目に入力せよ。
(2)の答えとして、文字列「エオカキク」を半角で2行目に入力せよ。
ただし、分数はそれ以上約分できない形で、根号の中身が最小になるように答えよ。


問題文

$N$ を正の整数、$c>0$ を定数とする。実数の組 $(t_1,t_2,\ldots,t_N)$ に対して関数

$$
f_n(t_1,t_2,\ldots,t_N)=t_n(1-t_n)\left(c(1+t_n)-\sum_{i=1}^{N}t_i\right) \ \ \ (n=1,2,\ldots ,N)
$$

を考える。また、$N\times N$ 行列 $J(t_1,t_2,\ldots,t_N)$ を

$$
J(t_1,t_2,\ldots,t_N) =
\left(
\begin{array}{ccc}
\frac{\partial f_1}{\partial t_1} & \cdots & \frac{\partial f_1}{\partial t_N} \\
\vdots & \ddots & \vdots \\
\frac{\partial f_N}{\partial t_1} & \cdots & \frac{\partial f_N}{\partial t_N}
\end{array}\right)
$$

と定義する。

$N=1000,\ \displaystyle{c=\frac{1000}{1.23}}$ として、以下の問いに答えよ。

(1)$1000$個の実数の組 $(x_1,x_2,\ldots,x_{1000})$ であって、$x_1\leq x_2 \leq \ldots \leq x_{1000} $ かつ

$$
f_n(x_1,x_2,\ldots,x_{1000})=0\ \ \ (n=1,2,\ldots ,1000)
$$

を満たすものはいくつあるか。

(2)(1)で考えた組のうち、$J(x_1,x_2,\ldots,x_{1000})$ の固有値の実部がすべて負であるようなものはいくつあるか。

解答形式

(1)の答えを半角数字で1行目に入力せよ。
(2)の答えを半角数字で2行目に入力せよ。