どの辺の長さも整数である$\triangle ABC$の面積を$S$とする。$S^2$の小数部分を求めよ。
とりうるすべての小数部分を小さい順に都度改行、列挙してください。 例: 「0,1/2,1/3,1/6,1/√5」の場合、
0 0.5 0.'3' 0.1'6' 1/\sqrt{5}
ヘロンの公式を使いましょう。
余りを考えましょう。
偶奇で場合分けしましょう。
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
四角形ABCD、四角形GHCFはそれぞれ正方形で、1辺の長さはそれぞれ10cm、4cmです。また、DCとFC、BCとHCはぴったり重なっているとする。また、四角形IBKJは長方形で、IJは2cm、IBは4cmとし、ABとIB、BCとBKはぴったり重なっているとする。更に、AJとDGの延長とBCとの交点をEとし、Gを通りΔADEの面積を2等分する線とADとの交点をP、Jを通りΔADEの面積2等分する線と、ADとの交点をRとする。さらにPGの延長とBCとの交点をQ、RJとABとの交点をSとする。PGとRJの交点をOとする。四角形OJEQの面積を求めよ。
分数は/で表してください。 例)2分の9は 9/2 で表す。
以下の多重根号を簡略化せよ。
難易度やnaoperc様よりご指摘いただいた根号の指数の誤りなど複数箇所を訂正しました.
問題文, 解答形式の文章を他の問題と統一しました. 解答に影響はありません.
解答形式を変更しました. 解答に影響はありません.
スペースを含めず, ASCII文字のみを用いて $\mathrm{\LaTeX}$ 形式で解答してください. $は必要ありません.
定点 $\mathrm{P_0}$, $\mathrm{P}$ があり, $\mathrm{P_0 P}=1$ を満たしている. 線分 $\mathrm{P_0 P}$ の中点を $\mathrm{P_1}$, 線分 $\mathrm{P_1 P}$ の中点を $\mathrm{P_2}$, 線分 $\mathrm{P_2 P}$ の中点を $\mathrm{P_3}$, ... というように, $n\in\mathbb{N}$ に対し, 点 $\mathrm{P_\mathit{n}}$ を 線分 $\mathrm{P_{\mathit{n}-1}\mathrm{P}}$ の中点として, 線分 $\mathrm{P_0 P}$ 上に無数の点をとる. いま, このようにしてできた全ての点が同時に出発して, 点 $\mathrm{P_\mathit{n}}$ が点 $\mathrm{P_{\mathit{n}-1}}$ を中心として円を描くように動くとき, $\displaystyle\lim_{n\to\infty}\mathrm{P_\mathit{n}}$ が描く曲線の長さを求めよ. ただし, 線分 $\mathrm{P_0 P_1}$ が線分 $\mathrm{P_0 P}$ に対してなす角, 線分 $\mathrm{P_1 P_2}$ が線分 $\mathrm{P_0 P_1}$ に対してなす角, 線分 $\mathrm{P_2 P_3}$ が線分 $\mathrm{P_1 P_2}$ に対してなす角, ... 線分 $\mathrm{P_\mathit{n} P_{\mathit{n}+1}}$ が線分 $\mathrm{P_{\mathit{n}-1} P_\mathit{n}}$ に対してなす角の変化はすべて等しく, 一定の割合であるとする.
tima_C様のご指摘を受け、難易度を変更しました.
ただし, 文字や根号などの係数が分数の場合は $$ \frac{3}{2}x\rightarrow\frac{3x}{2} $$ のように, 文字を分子にまとめてください.
一般項${a_n}=3(\frac{\sqrt{3}}{2})^{n-1}+\frac{(\sqrt{5}-1)^{n-1}}{2}+\frac{(\sqrt{5}+1)^{n-1}}{3}+(\sqrt{2}-1)^{n-1}$を与える数列${a_n}$の漸化式を考えることにより$x$についての方程式$$x^4+(1-\sqrt{2}-\frac{\sqrt{3}}{2}-2\sqrt{5})x^3+(4-\frac{\sqrt{3}}{2}-2\sqrt{5}+\frac{\sqrt{6}}{2}+2\sqrt{10}+\sqrt{15})x^2+(4-4\sqrt{2}-2\sqrt{3}+\sqrt{15}-\sqrt{30})x-2\sqrt{3}+2\sqrt{6}=0$$を解いてください。
それぞれの解について、実数の場合はその整数部分、複素数の場合は実数部分の整数部分を求め、それらを全て足し合わせた数を半角で1行目に入力してください。
$\quad$ 鈍角三角形の三辺の長さが $40_{(N)},$ $399_{(N)},$ $401_{(N)}$ である. 自然数 $N$ の満たす条件を求めよ. $$\quad$$
半角で入力してください. $N$ の値が一意に定まる場合は, その値を入力してください. $N$ の値に範囲がある場合は, 最小値~最大値 という形式で入力してください. ただし, 最大値が存在しない場合は, 最小値~ という形式で入力し, 複数の区間が存在する場合は最小値の小さいものから改行区切りで入力してください. $\mathrm{ex})$ 解答が $N=17,~22≦N≦30,~330≦N$ の場合 17 22~30 330~
初めに$N$枚のコインを持っています。下記のルールを守ってゲームを$m$回するとき、最後に持っているコインの枚数としてありえる枚数は$K$通りあります。このとき場合の数$K$を最大化するための$m$を答えてください。
半角英数と下記の半角記号で答えてください。
()+-/^!
x^(n-1)/(x+y)!
3本の杭と中央に穴のあいた大きさの異なる$n$枚の円盤があります。いま、杭の1つにすべての円盤が小さいものが上にくるように積み重なっています(初期状態)。この状態から下記のルールを守りながら操作を行うとき、初期状態から到達し得る状態は何通りありますか。ただし初期状態も1通りと数え、また3本の杭は区別することとします。
例えば「左端の杭に大きさ1から$n$の全ての円盤が積み重なっている状態」を1つ、そこから操作を一回だけ行い、「左端に大きさ2から$n$の円盤、真ん中に大きさ1の円盤が積み重なっている状態」を1つ、のように状態の数をカウントします。また、「真ん中の杭に大きさ1から$n$の全ての円盤が積み重なっている状態」と、「右端の杭に大きさ1から$n$の全ての円盤が積み重なっている状態」のように杭が異なる場合もそれぞれ別の状態としてカウントします。
半角英数字と下記の半角記号で答えてください。式中にスペースを含めないでください。
半円と平行四辺形が図のように配置されています。赤い三角形の面積が3のとき、青い線分の長さを求めてください。 ※平行四辺形の一辺と半円は接する。
$$x=\fbox{ア}\sqrt{\fbox{イウ}-\fbox エ\sqrt{\fbox オ}}$$と表せるので、文字列 アイウエオ を解答してください。ただし、$\fbox ア~\fbox オ$には0以上9以下の整数が入ります。
$$\quad$$鋭角三角形の三辺の長さが $22_{(N)},$ $124_{(N)},$ $130_{(N)}$ である。 自然数 $N$ の満たす条件を求めよ。 $$\quad$$
半角で入力してください。 $N$ の値が一意に定まる場合は、その値を入力してください。 $N$ の値に範囲がある場合は、最小値~最大値という形式で入力してください。ただし、最大値が存在しない場合は、最小値~という形式で入力し、複数の区間が存在する場合は最小値が小さいものから改行区切りで入力してください。 例) 解答が $N=17, 22≦N≦30, 330≦N$ の場合 17 22~30 330~
${}$ 西暦2022年問題第2弾です。第1弾に引き続き虫食算で、今回は割り算にしてみました。数学的手法(約数や倍数、偶奇性や剰余、不等式による絞り込み、などなど)を適宜用いることで面倒な場合分けや仮置きを軽減できるよう仕込んでいるのは変わりません。パズル的に解くのもよし、数学的にゴリゴリ解くのもよし、どうぞお好きなようにお楽しみください!
${}$ 解答は2行目を「被除数÷除数」の形で入力してください。 (例) $2022 \div 102 = 19$ 余り $84$ → $\color{blue}{2022 \text{÷} 102}$ 入力を一意に定めるための処置です。数字は半角で、「÷」の演算記号はTeX記法(\div)ではなく全角記号の「÷」でお願いします。
$xy$平面上において、$A(1,0),B(1,1)$とする。中心が原点の単位円上に動点$P$、線分$AB$上に動点$Q$をとる。また、三角形$PQR$が正三角形となるように点$R$をとる。ただし、点$P,Q,R$はこの順に反時計回りに位置し、点$P,Q$がともに$(1,0)$にあるときは$R(1,0)$とする。このとき、点$R$の動きうる領域を図示し、その面積を求めよ。
面積のみを解答してください。 答えは$\displaystyle\frac{\pi}{a}+\frac{b+\sqrt{c}}{d}$($a,b,c,d$は1桁の自然数)となりますので、センター、共通テスト形式で$a,b,c,d$を埋め、4桁の自然数「abcd」を入力してください。
$x,y$を自然数とする。$x^2+8y$と$y^2+8x$がともに平方数になるような$x,y$の組$(x,y)$をすべて求めよ。
例えば、$(x,y)=(1,2),(13,4),(51,16)$と答えたい場合は
12 134 5116
と入力してください。解の組は$x$の値が小さい順に並べてください。$x$の値が同じで$y$の値が異なる場合は$y$の値が小さい方を先に入力してください。