全問題一覧

カテゴリ
以上
以下

Ajigohan

公開日時: 2024年3月10日15:50 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

直角三角形Nの頂点A,B,Cをそれぞれ中心とする円Cp,Cq,Crがあり、それぞれ半径はRp,Rq,Rr(Rp<Rq,Rp<Rr)
直角三角形Nの周の長さを2ab(a,bは互いに素)とします。Rp,Rq,Rr,a,bは自然数。円Cpと円Cq,円Cqと円Cr,円Crと円Cpはそれぞれ接しています。
a<b<2aのとき、Rpをa,bを用いて表してください。

解答形式

半角英数で答えてください。

natsuneko

公開日時: 2024年3月9日23:44 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ

代数

問題文

実数列 $\lbrace a_n \rbrace_{n = 1, 2, \cdots 2024}$ が以下を満たしています.
・ $a_0 = 0$
・ $0 \leq a_n \leq n+1$
・ $a_{2024} = 2025$

このとき,
$$\sum_{n = 1}^{2024} \sqrt{{a_{n-1}}^2 + {a_{n}}^2 - a_{n-1}a_n - 2na_{n-1} + na_n + n^2}$$
には最小値が存在するため, 最小値を取るときの $a_{1000}$ の値を求めて下さい. ($a_{1000}$ の値は一意に定まります.)

解答形式

答えは, 互いに素な正整数 $a, b$ によって $\cfrac{b}{a}$ と表されるため, $a+b$ の値を解答して下さい.

sin

公開日時: 2024年3月9日21:41 / ジャンル: 謎解き / カテゴリ: / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

以下の数字をとあるルールに則って変換し、並べると以下のようになりました
35→の後に続く数列を入る数列を40項目まで答えよ
24→24,12,8,6,8,4,6,3,8,6,4,2,12,11,10,9,8,7,6,5,4,3,2,1,24,24,24,24,24…以降24が無限に続く30→30,15,10,9,6,5,6,9,6,3,10,8,6,4,2,15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,30,30,30,30,30…以降30が無限に続く
25→25,13,9,7,5,5,7,4,9,7,5,3.13,12,11,10,,9,8,7,6,5,4,3,2,1,25,25,25,25,25…以降25が無限に続く

解答形式

35→(ここから先を答えよ)…以降35が無限に続く
数字は"半角"で、数字の間には","を入れること

takahashi

公開日時: 2024年3月9日8:42 / ジャンル: プログラミング / カテゴリ: / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

let a=0;
for(let n=0;n<=100;n++){
a=a+n
}
console.log(a);

のとき、何が出力されますか

解答形式

例)半角数字で入力してください。

sha256

公開日時: 2024年3月8日21:58 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ

多項式 高校数学

問題文

$n,m \ (m\geq n)$を正整数の定数とし、多項式$f(x)$を$f(x)=x^m$で定めます。
$f(x)$を$(x-2)^n$で割った商$Q(x)$について、$Q(2)=40$が成立しました。

$(n,m)$の組としてあり得るもの全てについて、$nm$の総和を求めてください。

解答形式

正整数値を半角で入力してください。

shoko_math

公開日時: 2024年3月8日21:12 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ

競技数学

問題文

$\dfrac{1}{2},\dfrac{2}{3},\dfrac{3}{5},\dfrac{5}{8},\dfrac{8}{13},\dfrac{13}{21},\dfrac{21}{34},\dfrac{34}{55},\dfrac{55}{89}$ の中から( $2$ 個以上の)偶数個の異なる分数を選ぶ方法 $2^{8}-1$ 通りに対し,選んだ数の積を考えるとき,それらの総和は互いに素な正の整数 $a,b$ を用いて $\dfrac{a}{b}$ と表せるので,$a+b$ の値を解答してください.

解答形式

半角数字で解答してください.

shoko_math

公開日時: 2024年3月8日21:12 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ

競技数学

問題文

正の整数 $n$ に対し,「 $n$ の各位の積の一の位」を $f(n)$ とします.
$f(1000)+f(1001)+f(1002)+\cdots+f(9998)+f(9999)$ の値を解答してください.

解答形式

半角数字で解答してください.

shoko_math

公開日時: 2024年3月8日21:12 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ

競技数学

問題文

以下の[条件]を満たす $3$ 桁の正の整数(つまり,$100$ 以上 $999$ 以下の正の整数)の組 $(A,B)$ すべてに対し,$A+B$ の値の総和を解答してください.

[条件] $A^2$ の下 $3$ 桁は $B$ であり,$B^2$ の下 $3$ 桁は $A$ である.

解答形式

半角数字で解答してください.

shoko_math

公開日時: 2024年3月8日21:12 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ

初等幾何 競技数学

問題文

$\triangle{ABC}$ の外接円を $O_1$ とし,辺 $CA$,辺 $CB$,円 $O_1$ に接する円を $O_2$ とします.また,円 $O_2$ と辺 $CA$ ,辺 $CB$,円 $O_1$ の接点をそれぞれ $P,Q,T$ とし,直線 $TP$ と円 $O_1$ の交点を ${R}(\ne{T})$ とし,直線 $TQ$ と円 $O_1$ の交点を $S(\ne{T})とします.$
$TA=23,TB=35,TC=57$ のとき,(四角形 $ARCS$ の面積):(四角形 $BSCR$ の面積)は互いに素な正の整数 $a,b$ を用いて $a:b$ と表されるので,$a+b$ の値を解答してください.

解答形式

半角数字で解答してください.

shoko_math

公開日時: 2024年3月8日21:12 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ

初等幾何 競技数学

問題文

鋭角三角形 $ABC$ の垂心を $H$,外心を $O$ とし,$A$ から $BC$ に下ろした垂線の足を $D$ とします.
$OH=3,AH:HD=7:2$ であり,$\triangle{ABC}$ の外接円半径が $5$ であるとき,${OD}^2$ の値は互いに素な正の整数 $a,b$ を用いて $\dfrac{a}{b}$ と表せるので,$a+b$ の値を解答してください.

解答形式

半角数字で解答してください.

shoko_math

公開日時: 2024年3月8日21:11 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ

競技数学

問題文

$4\times9$ のマス目があり,$1$ つのマスの一辺の長さは $1$ とします.最も左下の点 $A$ から出発して,「線に沿って長さ $1$ だけ右または上または左に進む」という操作を繰り返して最も右上の点 $B$ にたどり着く経路のうち同じ線分を $2$ 回以上通過しないもの全てに対し,経路の長さの総和を求めてください.

解答形式

半角数字で解答してください.

shoko_math

公開日時: 2024年3月8日21:11 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ

競技数学

問題文

半径が $1,2,3,4,5$ の同心円に半径 $5$ の円の直径を $1$ 本付け加えて出来る図形を一筆書きで描く方法は何通りあるかを求めてください.
ただし,同じ道でも向きが異なる一筆書きは異なるものとして数えるものとします.

解答形式

半角数字で解答してください.