公開日時: 2025年8月23日11:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
この問題は、Prime Prime Prime (Hard)と一部分一致しているため、相違点を赤色で強調しています。
$n$ 桁の素数であって,すべての $i,j$ $ (1 \le i $ ≦ $ j \le n)$ において, $i$ 桁目から $j$ 桁目までが素数である数のうち,最大のものを答えてください.
例えば, $23$ は $2(i=1,j=1),3(i=2,j=2),$$23(i=1,j=2)$ が全て素数なので条件を満たします.
半角数字で解答してください.
公開日時: 2025年4月11日17:42 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ
△ABCについて、辺BC,CA,ABの長さをそれぞれa,b,cとおく。∠C=120°であり、a,b,cが全て素数であるような組(a,b,c)を全て求めよ。
(1,2,3)などのように、半角かっこの中に数字と半角コンマを入れ解答する。かっこ、半角コンマの前後にスペースを含まないこと。複数個ある場合は辞書順に並べて、(まずaの値が小さい順に並べ、aの値が同じな時はbの値が小さい順に並べ、aとbの値が同じな時はcの値が小さい順に並べること。)1行に1つ解答し、改行すること。
公開日時: 2024年3月25日23:09 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 採点者ジャッジ
$x,y,z$は整数とする。また、$p$は素数とする。
$x^{4}+y^{4}+z^{4}-2x^{2}y^{2}-2y^{2}z^{2}-2z^{2}x^{2}-8x^{2}yz-8xy^{2}z-8xyz^{2}=p$となるとき、$p$の最小値を求めよ。また、$p$が最小値をとるとき、$x,y,z$の組を全て求めよ。
$p$の最小値を$p$=~の形式で1行目に、$x,y,z$の組を$(x,y,z)$=~ の形式で2行目以降にすべて書いてください。ジャッジは自分でするのであまり気にしないで自由に回答してください。