$2^{p}+7^{q}=r^{p+q-r}$を満たす素数の組$(p,q,r)$をすべて求めよ.
文字列$pqr$を,半角数字で解答してください.解が複数ある場合は, (1) $p$の値が小さい順 (2) $p$の値が等しい組は,$q$の値が小さい順 (3) $p,q$の値がともに等しい組は,$r$の値が小さい順 に,1行に1つずつ書いてください.
どなたか素数に限らない整数解を全て求めてくださるとありがたいです.
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
$\dfrac{1}{\cos\dfrac{\pi}{9}}+\dfrac{1}{\cos\dfrac{5}{9}\pi}+\dfrac{1}{\cos\dfrac{7}{9}\pi}=-\dfrac{a}{b}$ ( $a,b$ は互いに素な自然数)である.
$a+b$ の値を求めよ.
半角数字で解答してください。
簡単です.教科書にもありそうなつまらない問題ですが,一応2通りの解法を用意しているので,考えていただけたら幸いです.
$\vec{x}=(1,\ p^{ \frac{1}{p}} )$ なるベクトル $\vec{x}$ の $L^{p \to +0}$ ノルムの値を求めよ.
次の計算をせよ.
$$ \sum_{k=1}^{2023}\sec\dfrac{6k-5}{6069}\pi\quad $$
ただし,$\sec\theta=\dfrac{1}{\cos\theta}$とする.
解答は整数となります.そのまま半角で入力してください.
$2^{p+q}-p^{q}=13$を満たす素数$\left(p,q\right)$をすべて求めよ.
$p^{2}+q^{2}$の値を,半角数字で解答してください.答えが複数ある場合は,値の小さい順に,1行に1つずつ書いてください.
(例) 解答が$\left(p,q\right)=\left(2,7\right),\left(5,11\right)$のときは,以下のように解答します.
53 146
4×4の16マスがある。このマス目を赤、青、黄、緑で塗ることを考える。
A:縦と横のどの辺をとっても赤、青、黄、緑が一回ずつ出現する。 B:以下のように4つの部屋に分割したときにどの部屋をとっても赤、青、黄、緑が1回ずつ出現する。 □□|□□ □□|□□ __|__ □□|□□ □□|□□
AとBを両方満たす塗り方は何通りありますか? (例:30通りだったら、30と答えなさい)
図の条件の下で,半円の直径 $x$ を求めてください.
$x^2$ の値を半角数字で解答してください.
図の条件の下で、青で示した角の大きさ $x$ を求めてください。
$x=a$ 度($0\leq a\lt 180$)です。整数 $a$ の値を半角数字で解答してください。
【補助線主体の図形問題 #083】 今週の図形問題です。暗算では処しがたい計算が待ち受けていますので、ぜひ紙&ペンをお供に挑戦してみてください。
${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。 (例) $12\cm^2$ → $\color{blue}{12.00}$ $10\sqrt{2}\cm^2$ → $\color{blue}{14.14}$ $\dfrac{1+\sqrt{5}}{2} \cm^2$ → $\color{blue}{1.62}$ 入力を一意に定めるための処置です。 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。
$2(x-y)^2-xy(x^2+2xy+y^2-3)+(2x+2y)^2-(x+y)^2+xy[(x+y)(x-y)+2y(x+y)+5]$
半角で解答のみを記入すること
降べきの順で記入すこと
同じ項の中にx,yが同時にある場合、xを先に記入すること
指数の表記は ^n の形で解答すること
括弧の外にある係数は左側に記入すること
括弧内の項は、文字 数 の順に記入すること
正方形と正三角形を組み合わせた以下の図形について、赤線の長さが6であるとき、図形全体の面積を求めてください。
2021.3.21 22:28 問題タイトルを修正しました。(解答に影響はありません) 正三角形の内接円と外接円があります。図のように線分の長さが与えられたとき、正三角形の一辺の長さを求めてください。
答えは$\fbox ア\sqrt{\fbox イ}$となります。文字列 アイ を解答してください。 ただし、$\fbox ア,\fbox イ$には一桁の自然数が入ります。また、根号の中身が平方数の倍数にならないように解答してください。
【補助線主体の図形問題 #080】 今週も補助線の威力が感じられる図形問題を用意しました。若干面倒な計算が待っているので、紙&ペンがあると安心かもしれません。存分に補助線による試行錯誤をお楽しみください。
${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。 (例) $12\cm$ → $\color{blue}{12.00}$ $10\sqrt{2}\cm$ → $\color{blue}{14.14}$ $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$ 入力を一意に定めるための処置です。 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。