$2^{p+q}-p^{q}=13$を満たす素数$\left(p,q\right)$をすべて求めよ.
$p^{2}+q^{2}$の値を,半角数字で解答してください.答えが複数ある場合は,値の小さい順に,1行に1つずつ書いてください.
(例) 解答が$\left(p,q\right)=\left(2,7\right),\left(5,11\right)$のときは,以下のように解答します.
53 146
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
θの方程式 sin^2θ-cosθ+a=0 (0≦θ<2π)の解が偶数個存在する場合における定数aのとりうる値の範囲を求めよ。
答えのみ
【補助線主体の図形問題 #092】 今週の図形問題です。解く人によって難易度の感じ方が大きく変わりそうな問題となりました。暗算で処理するのは厳しいでしょう。紙&ペンをお手元にご用意の上お楽しみください。
${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。 (例) $12\cm$ → $\color{blue}{12.00}$ $10\sqrt{2}\cm$ → $\color{blue}{14.14}$ $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$ 入力を一意に定めるための処置です。 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。
2曲線 $ \begin{cases} y=2x^3+10x^2+12x+7 \newline y=x^2+5x+13 \end{cases} $ で囲まれる部分の面積$S$を求めよ。
答えは $\displaystyle\frac{[abc]}{[de]}$ という形になります。($a,b,c,d,e$は1桁の自然数) センター、共通テスト方式で答えてください。 例: $S=\displaystyle\frac{765}{13}$のときは「76513」と入力する。
$\dfrac{1}{\cos\dfrac{\pi}{9}}+\dfrac{1}{\cos\dfrac{5}{9}\pi}+\dfrac{1}{\cos\dfrac{7}{9}\pi}=-\dfrac{a}{b}$ ( $a,b$ は互いに素な自然数)である.
$a+b$ の値を求めよ.
半角数字で解答してください。
簡単です.教科書にもありそうなつまらない問題ですが,一応2通りの解法を用意しているので,考えていただけたら幸いです.
$\vec{x}=(1,\ p^{ \frac{1}{p}} )$ なるベクトル $\vec{x}$ の $L^{p \to +0}$ ノルムの値を求めよ.
$a^n+b^m=2024(a>b>0,n>1,m>1)$である自然数の組$(a,b,n,m)$をすべて求めよ。
解答と解答を改行区切りで入力してください。
(a,b,n,m) という形で解答をしてください。 複数ある場合は前述の通り改行区切りで入力してください。 また、aが小さい順に、aが同じ場合はbが小さい順に解答してください。
こちらのミスで自動判定の解答が指定した回答形式とあっていませんでした。すみませんでした。
図の条件の下で、青で示した角の大きさ $x$ を求めてください。
$x=a$ 度($0\leq a\lt 180$)です。整数 $a$ の値を半角数字で解答してください。
実数$x$の方程式$3\sqrt{x+1-4\sqrt{x-3}}=x-1$を解け。
半角数字、またはTexで解答してください。$x=$は書かなくて良いです。
73²⁰²³を17で割った余りを求めよ。
半角で答えてください
図の条件の下で、線分 $OO'$ の長さを求めてください。
$OO'^2$ は正整数になるので、その値を半角数字で解答してください。
【補助線主体の図形問題 #083】 今週の図形問題です。暗算では処しがたい計算が待ち受けていますので、ぜひ紙&ペンをお供に挑戦してみてください。
${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。 (例) $12\cm^2$ → $\color{blue}{12.00}$ $10\sqrt{2}\cm^2$ → $\color{blue}{14.14}$ $\dfrac{1+\sqrt{5}}{2} \cm^2$ → $\color{blue}{1.62}$ 入力を一意に定めるための処置です。 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。
次の計算をせよ.
$$ \sum_{k=1}^{2023}\sec\dfrac{6k-5}{6069}\pi\quad $$
ただし,$\sec\theta=\dfrac{1}{\cos\theta}$とする.
解答は整数となります.そのまま半角で入力してください.