$$
恒等式\frac{3ax-b}{(x-1)(2x+1)}=\frac{{cos60゜}+{log_24^a}}{x-1}+\frac{{sin45゜}+{log_327^b}}{2x+1}\\について、a,bについて求めて下さい。
$$
$$
(1)\begin{cases}a=\frac{2}{5}\\b=-\frac{1}{4}\end{cases}
(2)\begin{cases}a=\frac{4}{6}\\b=-\frac{2}{5}\end{cases}
(3)\begin{cases}a=\frac{6}{7}\\b=-\frac{3}{7}\end{cases}
(4)\begin{cases}a=\frac{7}{8}\\b=-\frac{5}{9}\end{cases}
$$
$0$ 以上 $1$ 以下の実数の組 $(x_0 , x_1 ,\ldots, x_{100})$ と正の実数の組 $(y_0 , y_1 ,\ldots ,y_{100})$ が以下の条件を満たしました.
$$
x_ny_n=n(0\leq n\leq 100),\quad y_0=2,\quad y_{100}=260
$$
この時,以下の値の最小値を求めてください.
$$
\sum_{k=0}^{99} \left(\sqrt{y_k^2+y_{k+1}^2-2y_ky_{k+1}\Bigl( x_kx_{k+1}+\sqrt{(1-x_k^2)(1-x_{k+1}^2)}\Bigr)}\right)
$$
求める値は $\sqrt{m}$ と表せるので, $m$ の値を半角数字で解答してください.
100をe進数で表記すると何桁になるか。(整数部分のみ)
半角数字+「桁」という文字(例:1桁)