$△ABC$は鋭角三角形とします。次に、$A,B,C$から$BC,CA,AB$におろした垂線の足をそれぞれ$X,Y,Z$とし、$△ABC,△XYZ$の内接円の半径をそれぞれ$r,r'$とします。このとき、次の式の最小値を求めてください。
$$
\frac{r}{r'}\cos{\frac A2}\cos{\frac B2}\cos{\frac C2}
$$
$$
\frac{r}{r'}\cos{\frac A2}\cos{\frac B2}\cos{\frac C2}\geq\frac{[ア]\sqrt{[イ]}}{[ウ]}=(最小値)
$$
となります。$[ア]+[イ]+[ウ]$を半角数字で解答してください。
ただし、$[ア],[イ],[ウ]$には自然数が入ります。また、分数部分は既約分数に、根号内の数字は最小となるようにしてください。
$I=\displaystyle \int_{0}^{\pi}\frac{x\sin x}{\sin^{2\cdot2}x -2\sin^2x+2} dx$を求めよ。
答えは、
$\displaystyle I=\frac{\pi}{a\sqrt{b}}(c\log(\sqrt{d}+e)+\pi)$の形になります。($a,b,c,d,e$は1桁の自然数)
「abcde」(5桁の自然数)を入力してください。なお、センター、共通テスト形式で数字を埋めてください。
2曲線
$
\begin{cases}
y=2x^3+10x^2+12x+7 \newline
y=x^2+5x+13
\end{cases}
$
で囲まれる部分の面積$S$を求めよ。
答えは
$\displaystyle\frac{[abc]}{[de]}$
という形になります。($a,b,c,d,e$は1桁の自然数)
センター、共通テスト方式で答えてください。
例:
$S=\displaystyle\frac{765}{13}$のときは「76513」と入力する。
$x^4+y^4+z^4+w^4+(x^2+y^2+z^2+w^2)(xy+xz+xw+yz+yw+zw)+4xyzw$
を因数分解せよ。
TeXで入力してください。項の順番に関しては辞書式順で入力してください。字数の高い因数を先に書いてください。
例1:
$(x^2+y^2+z^2+w^2)(x+y+z+w)$と答えるには
(x^2+y^2+z^2+w^2)(x+y+z+w)を入力してください。
例2:
$x,y,z,w$から重複せず3文字を選び、かけ合わせた項4つを辞書式順に並べると
$xyz,xyw,xzw,yzw$
三角形の3つの内角の大きさを$A,B,C$とします。このとき、次の式の最小値を求めてください。
$$
\frac{1-\cos A}{\cos B+\cos C}+\frac{1-\cos B}{\cos C+\cos A}+\frac{1-\cos C}{\cos A+\cos B}
$$
最小値は$\frac {[ア]}{[イ]}$となります。$[ア]+[イ]$を解答してください。
ただし、$[ア],[イ]$にはそれぞれ自然数が入り、その最大公約数は$1$とします。
2つの直角二等辺三角形が、それらの斜辺が交点をもつように配置されています。青い線分の長さが10、Xで示した角が鈍角のとき、赤い線分の長さを求めてください。
ただし、同じ色で示した線分の長さはそれぞれ等しいです。
(赤い線分の長さ)$=[ア]\sqrt{[イ]}$ となります。
ただし、$[ア],[イ]$にはそれぞれ自然数が入ります。$[ア]+[イ]$を解答してください。また、$[イ]$に入る自然数はできるだけ小さくしてください。
例: (赤い線分の長さ)$=3\sqrt5$ なら、$3+5\rightarrow8$と解答
同一平面上に2つの円$C_1$と$C_2$があり、2円の半径はいずれも1で、2円の中心間距離は4である。円$C_1$上に動点$P$をおき、点$P$から円$C_2$に2本の接線$l_1,l_2$を引く。また、$l_1,l_2$と円$C_2$の接点をそれぞれ$Q,R$とする。点$P$が円$C_1$上を動くとき、線分$QR$が通過しうる領域$X$の面積$S$を求めよ。
答えは
$\displaystyle S=\frac{\sqrt{[ab]}}{[cde]}\log{\frac{[f]+[g]\sqrt{[hi]}}{[j]−[k]\sqrt{[l]}}}+\frac{π}{[m]}+\frac{[n]}{[op]}(\sqrt{[q]}−[r])$
の形になります。(a~rは一桁の自然数)
センターや共通テストのマークと同じ形式で数字を埋め、「abcdefghijklmnopqr」(18桁の自然数)を半角で入力してください。