数学の問題一覧

カテゴリ
以上
以下

nmoon

公開日時: 2023年11月2日21:00 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

$11 \times 11$ の長方形のマスのうちいくつかを次の条件を満たしながら黒色に塗っていきます.

  • 黒色に塗られた任意の $2$ つのマスは辺を共有しない(頂点は共有しても良い).

このとき,黒色に塗ることができるマスの数は最大でいくつですか.

解答形式

正整数で答えて下さい.

tb_lb

公開日時: 2023年1月2日19:42 / ジャンル: 数学 / カテゴリ: 算数 / 難易度: / ジャッジ形式: 自動ジャッジ

パズル 西暦問題 虫食算 2023年問題

西暦2023年問題第2弾です。第1弾に引き続き虫食算で、今回は掛け算にしてみました。数学的手法(約数や倍数、偶奇性や剰余、不等式による絞り込み、などなど)を適宜用いることで面倒な場合分けや仮置きを軽減できるよう仕込んでいるのは変わりません。パズル的に解くのもよし、数学的にゴリゴリ解くのもよし、どうぞお好きなようにお楽しみください!

解答形式

${}$ 解答は上2行を「被乗数×乗数」の形で入力してください。
(例) $102 \times 2023 = 206346$ → $\color{blue}{102 \text{×} 2023}$
 入力を一意に定めるための処置です。数字は半角で、「×」の演算記号はTeX記法(\times)ではなく全角記号の「×」でお願いします。

tb_lb

公開日時: 2021年2月7日22:33 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ

初等幾何 角度

【補助線主体の図形問題 #002】
 先日より補助線主体の初等幾何の問題を投稿しています。
 今日は補助線問題の花形である求角問題を用意しました。とはいえ、補助線問題としてまだまだ大人しめです。手慣れている方は頭の中だけでの処理に挑戦してみてください。

解答形式

${\renewcommand\deg{{}^{\circ}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。角度は弧度法ではなく度数法で表すものとします。
(例) $12\deg$ → $\color{blue}{12.00}$  $\frac{360}{7}^{\circ}$ → $\color{blue}{51.43}$
 入力を一意に定めるための処置です。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

ヒント内容の予告

  1. 大雑把な方針
  2. ヒント1の内容をやや具体的に
  3. ヒント2の続き

rankturnip

公開日時: 2023年10月27日22:00 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

以下を満たす正の合成数 $N$ としてあり得る最大値と最小値の和を解答してください.
・$N$ のすべての正の約数の並び替え $d_1,d_2,\cdots,d_t$ であって,任意の $k=1,2,\cdots,t-1$ に対して
$$\dfrac{(d_{k+1})^N+1}{d_k}$$
 が整数となるようなものが存在する.

解答形式

最大値と最小値の和を解答してください.

masorata

公開日時: 2020年12月5日18:00 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ

三角関数 まそらた杯

問題文

(1)$\displaystyle \tan\theta=\frac{1}{4}$ のとき、$\displaystyle \tan2\theta=\frac{\fbox{ア}}{\fbox{イウ}}$ である。

(2)連立方程式

$$
\begin{cases}
x_1=x_2(2+x_1x_2) \\
x_2=x_3(2+x_2x_3) \\
x_3=x_4(2+x_3x_4) \\
x_4=x_1(2+x_4x_1)
\end{cases}
$$

を満たす実数 $(x_1,x_2,x_3,x_4)$ の組は全部で $\fbox{エオ}$ 個あり、そのうち $\tan20^\circ < x_1 < \tan80^\circ$ を満たすような組は $\fbox{カ}$ 個ある。

解答形式

ア〜カには、0から9までの数字が入る。
(1)の答えとして、文字列「アイウ」を半角で1行目に入力せよ。
(2)の答えとして、文字列「エオカ」を半角で1行目に入力せよ。

masorata

公開日時: 2020年10月17日10:00 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ

積分 まそらた杯

問題文

$f(x)=-16x^3+24x^2-9x+1$ とおく。以下の問いに答えよ。

⑴ 以下の式が $\theta$ の恒等式になるように空欄を埋めよ。なお、同じ文字の空欄には同じ数が入る。

$$
f\left( \frac{\fbox{ア}+\sin\theta}{\fbox{イ}}\right)=\frac{\fbox{ア}+\sin(\fbox{ウ}\theta)}{\fbox{イ}}
$$

⑵ 次の定積分を求めよ。
$$
\int_ {0.5} ^{0.75} f(f(f(x))) dx = \frac{\fbox{エオカ}}{\fbox{キクケコ}}
$$

解答形式

ア〜コには、0から9までの数字が入る。
⑴の答えとして、文字列「アイウ」をすべて半角で1行目に入力せよ。
⑵の答えとして、文字列「エオカキクケコ」をすべて半角で2行目に入力せよ。
ただし、分数はそれ以上約分できない形で答えよ。

Kinmokusei

公開日時: 2020年6月25日18:08 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

半円2つが図のように配置されています。
赤い線分と青い線分は長さの比が1:2です。
このとき、Xの角度を求めてください。

解答形式

半角数字で入力してください。
「度」や「°」は付けないでください。
例:X=57° → 57

masorata

公開日時: 2020年6月21日13:46 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

実数 $A,B,C \ (-\pi/2<A<B<C<\pi/2)$ が

$$
\frac{1+\tan^3{A}}{1+3\tan^2A}=\frac{1+\tan^3{B}}{1+3\tan^2B}=\frac{1+\tan^3{C}}{1+3\tan^2C}\\
$$

をみたして動くとき、$\tan{(A+B+C)}$ がとりうる値の範囲を求めよ。

解答形式

解は $ m<\tan{(A+B+C)}< M$ の形で、$m,M$ はどちらも整数である。
$m,M$の値をそれぞれ1,2行目に半角数字で入力せよ。
例えば $m=-33, M=4$ と解答する場合、1行目に「-33」、2行目に「4」と入力せよ。

(20/06/21: よりシンプルな問題文に直しました。答えはそのままです。)

masorata

公開日時: 2020年12月5日18:00 / ジャンル: 数学 / カテゴリ: 算数 / 難易度: / ジャッジ形式: 自動ジャッジ

数列 論理パズル まそらた杯

問題文

以下の文がそれぞれ正しくなるように、空欄に $0$ から $9$ までの数字を埋めよ。ただし、同じ文字の空欄には同じ文字が入る。

(1)数列 $\fbox{ア}, \fbox{イ}, \fbox{ウ}, \fbox{エ},\fbox{オ}$ には、
$0$ が $\fbox{ア}$ 回、$1$ が $\fbox{イ}$ 回、$2$ が $\fbox{ウ}$ 回、$3$ が $\fbox{エ}$ 回、$4$ が $\fbox{オ}$ 回、それぞれ現れる。

(2)数列 $\fbox{カ}, \fbox{キ}, \fbox{ク}, \fbox{ケ}, \fbox{コ}, \fbox{サ}, \fbox{シ}, \fbox{ス}, \fbox{セ}, \fbox{ソ}$ には、
$0$ が $\fbox{カ}$ 回、$1$ が $\fbox{キ}$ 回、$2$ が $\fbox{ク}$ 回、$3$ が $\fbox{ケ}$ 回、$4$ が $\fbox{コ}$ 回、
$5$ が $\fbox{サ}$ 回、$6$ が $\fbox{シ}$ 回、$7$ が $\fbox{ス}$ 回、$8$ が $\fbox{セ}$ 回、$9$ が $\fbox{ソ}$ 回、それぞれ現れる。

解答形式

ア〜ソには、0から9までの数字が入る。
(1)の答えとして、文字列「アイウエオ」を半角で1行目に入力せよ。
(2)の答えとして、文字列「カキクケコサシスセソ」を半角で2行目に入力せよ。

halphy

公開日時: 2020年8月15日18:00 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

$r$ を正の整数とする。$xyz$ 空間において,原点を中心とする半径 $\sqrt{r}$ の球面を $S_r$ で表すとき,次の問いに答えなさい。

  1. $S_r$ が格子点を含まないような最小の $r$ を求めなさい。
  2. $S_r$ が格子点を含まず,$r$ が $8$ の倍数であるような最小の $r$ を求めなさい。

※点 $(x,y,z)$ が格子点であるとは,$x,y,z$ がすべて整数であることをいう。

解答形式

改行区切りで,1行目に 1. の答えを,2行目に 2. の答えを入力してください。

masorata

公開日時: 2020年11月6日18:00 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ

KOH-MC

問題文

$$
1+(2^1+1)(2^2+1)(2^4+1)(2^8+1)(2^{16}+1)(2^{32}+1)
$$

は、$2$ で最大何回割り切れるか。

解答形式

半角数字のみで答えよ。
たとえば $5555$ 回割り切れると答えるのであれば1行目に
5555
と入力せよ。

halphy

公開日時: 2020年6月10日17:57 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

次の命題の真偽を答えなさい。

  1. $0\leq a, b < 10$ を満たす実数 $a,b$ を $10$進小数 で表したものをそれぞれ $a_0.a_1a_2a_3\cdots, \;b_0.b_1b_2b_3\cdots$ とするとき,ある $k=0,1,\cdots$ に対して $a_k\neq b_k$ ならば $a\neq b$ である。

  2. $\vec{a}_1, \vec{a}_2$ を平行(*)でない平面ベクトルとする。実数 $k_1, k_2, k_1', k_2'$ に対して
    \begin{equation}
    k_1\vec{a}_1+k_2\vec{a}_2=k_1'\vec{a}_1+k_2'\vec{a}_2
    \end{equation}が成り立つならば $k_1=k_1'$ かつ $k_2=k_2'$ である。

  3. 実数全体を定義域とする微分可能な実数値関数 $f(x)$ が
    \begin{equation}
    f'(x)=x
    \end{equation}を満たすとする。このとき,$f(x)$ はある実数 $a$ を用いて
    \begin{equation}
    f(x)=\int_a^x t dt
    \end{equation}と表せる。

  4. 数列 $\{a_n\}, \{b_n\}$ は $n\to\infty$ である実数に収束するとする 。任意の $n$ に対して $b_n\neq 0$ ならば,数列 $\displaystyle{\left\{\frac{a_n}{b_n}\right\}}$ も収束する。

注意

  • *この問題では,平面ベクトル $\vec{a}_1, \vec{a}_2$ が平行であるとは $\vec{a}_1=k\vec{a}_2$ となる実数 $k\neq 0$ が存在することをいいます。
  • (2020/6/11 15:40 更新)命題 1 の条件を変更しました。正解には影響ありません。

解答形式

$k=1,2,3, 4$ に対して,命題 $k$ が真なら T を,偽なら F を第 $k$ 行に出力してください。