マトリョーシカ(鈴木貫太郎さんの某動画リスペクト)

nemuri_neco 自動ジャッジ 難易度: 数学 > 高校数学
2022年3月19日10:08 正解数: 10 / 解答数: 16 (正答率: 62.5%) ギブアップ数: 1
関数 整数問題 数I

問題文

$f(x)=x^2-4x+6$とする。$f(f(f(f(f(p+2)))))$が素数となるような素数$p$を全て求めよ。

解答形式

ない場合は「0」、ある場合は小さい順に半角英数字で入力してください。


ヒント1

$f(p+2)$を計算してみましょう。


スポンサーリンク

解答提出

この問題は自動ジャッジの問題です。 解答形式が指定されていればそれにしたがって解答してください。

Sign in with Google Discordでログイン パスワードでログイン

ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。

または


おすすめ問題

この問題を解いた人はこんな問題も解いています

円と3本の弦

tb_lb 自動ジャッジ 難易度:
19月前

10

【補助線主体の図形問題 #019】
 1週空いての久しぶりの出題となりました。今回はガリガリ長さを求める解法から暗算解法まで解法の種類多めとなっています。腕に覚えのある方は暗算解法だけでなく、解法の数にも挑戦してもらえたら嬉しいです!

解答形式

${}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\ \mathrm{cm}$ → $\color{blue}{12.00}$  $10\sqrt{2}\ \mathrm{cm}$ → $\color{blue}{14.14}$
 入力を一意に定めるための処置です。$\pi=3.14$とは限りませんのでご注意ください。関数電卓やグーグルの電卓機能、Wolfram|Alphaなどのご利用をお勧めします。

24月前

13

【補助線主体の図形問題 #002】
 先日より補助線主体の初等幾何の問題を投稿しています。
 今日は補助線問題の花形である求角問題を用意しました。とはいえ、補助線問題としてまだまだ大人しめです。手慣れている方は頭の中だけでの処理に挑戦してみてください。

解答形式

${}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。角度は弧度法ではなく度数法で表すものとします。
(例) $12^{\circ}$ → $\color{blue}{12.00}$  $\frac{360}{7}^{\circ}$ → $\color{blue}{51.43}$
 入力を一意に定めるための処置です。関数電卓やグーグルの電卓機能、Wolfram|Alphaなどのご利用をお勧めします。

求長問題24

Kinmokusei 自動ジャッジ 難易度:
18月前

7

問題文

半円と、その中心を通る円が図のように配置されています。赤、青で示した弧の長さがそれぞれ3, 4のとき、緑で示した弧の長さを求めてください。

解答形式

半角数字で解答してください。

22月前

4

【補助線主体の図形問題 #010】
 今年2021年の1月末から投稿を初めて10問目となりました。キリ番記念(?)に少しばかり手ごたえのある問題をお送りすることにします。うまい補助線を引けるだけでは不十分で、補助線を活かすための発想も必要です。じっくり腰を据えて補助線を戯れてみてください!

解答形式

${}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\ \mathrm{cm}$ → $\color{blue}{12.00}$  $10\sqrt{2}\ \mathrm{cm}$ → $\color{blue}{14.14}$
 入力を一意に定めるための処置です。$\pi=3.14$とは限りませんのでご注意ください。関数電卓やグーグルの電卓機能、Wolfram|Alphaなどのご利用をお勧めします。

求角問題8

Kinmokusei 自動ジャッジ 難易度:
22月前

3

問題文

2つの正方形が図のように配置されています。緑で示した角の大きさを求めてください。

解答形式

半角数字で解答してください。
ただし、解答は度数法で、「°」や「度」といった単位を付けずに0以上360未満の数を解答してください。

極値

zyogamaya 自動ジャッジ 難易度:
2年前

3

問題文

関数$f(x)=(xe^{x-1}+x^2+2x+2)e^{-x}$の極大値を求めよ。

解答形式

半角数字またはTeXで入力してください。分数の場合は「a/b」などと入力可能です。
例:
答えが$\displaystyle\frac{e^2}{7}$の場合、「e^2/7」と入力する。

答えが$\displaystyle\frac{4e^3+26}{e^4}$の場合、「(4e^3+26)/e^4」と入力する。

10月前

4

問題文

図の条件の下で、ピンクで示した線分の長さ $x$ を求めてください。
なお、外側の四角形は正方形です。

解答形式

半角数字で解答してください。

23月前

24

【補助線主体の図形問題 #005】
 今回の図形問題は入試問題にもありそうな設定にしてみました。暗算でも処理しやすいように数値を調整してあります。腕に覚えのある方は頭の中だけで処理しきってみてください。

解答形式

${}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\ \mathrm{cm}$ → $\color{blue}{12.00}$  $10\sqrt{2}\ \mathrm{cm}$ → $\color{blue}{14.14}$
 入力を一意に定めるための処置です。$\pi=3.14$とは限りませんのでご注意ください。関数電卓やグーグルの電卓機能、Wolfram|Alphaなどのご利用をお勧めします。

うぉり~っす

masorata 自動ジャッジ 難易度:
2年前

6

問題文

数列 $ \{ a_n \} $ $(n=1,2\dots)$ を、
$$
a_1=1,\ a_{n+1} = \sum_{k=1}^{n}\frac{8k-3}{4n^2-1}a_k\ (n = 1,2,...)
$$

で定める。$\displaystyle \lim_{n\to\infty}{a_{n}}$ を求めよ。

解答形式

求める極限値は、ある有理数 $q$ を用いて $q \pi$ と表せる。この $q$ を小数で表し、小数第4位を四捨五入したものを入力せよ。すべて半角数字で入力すること。なお、もし $3/2=1.5$のようになる場合は、$1.500$ と入力せよ。

正方形と2つの円

tb_lb 自動ジャッジ 難易度:
20月前

6

【補助線主体の図形問題 #015】
 今回は円がらみの求長問題にしてみました。地道なド根性解法もありますが、補助線次第では暗算も可能なように仕込んであります。お好みの解法・手法で挑戦してみてください。

解答形式

${}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\ \mathrm{cm}$ → $\color{blue}{12.00}$  $10\sqrt{2}\ \mathrm{cm}$ → $\color{blue}{14.14}$
 入力を一意に定めるための処置です。$\pi=3.14$とは限りませんのでご注意ください。関数電卓やグーグルの電卓機能、Wolfram|Alphaなどのご利用をお勧めします。

求長問題12

Kinmokusei 自動ジャッジ 難易度:
2年前

4

問題文

長方形・正方形・円が図のように配置されています。赤で示した線分の長さが7、長方形の面積が12のとき、青い線分の長さとしてあり得るものを全て求めてください。

解答形式

解答は$\sqrt{\fbox {アイ}},\frac{\sqrt{\fbox{ウエオ}}}{\fbox カ}$となります。文字列「アイウエオカ」を解答してください。ただし、根号の中身が平方数の倍数とならないように解答してください。

21月前

17

【補助線主体の図形問題 #011】
 今日は傍心を登場させてみました。傍心への慣れ具合により難易度の体感が大きく変わるかもしれません。暗算でも解けるように調整してあります。存分に傍心の性質をお楽しみください。

解答形式

${}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\ \mathrm{cm}$ → $\color{blue}{12.00}$  $10\sqrt{2}\ \mathrm{cm}$ → $\color{blue}{14.14}$
 入力を一意に定めるための処置です。$\pi=3.14$とは限りませんのでご注意ください。関数電卓やグーグルの電卓機能、Wolfram|Alphaなどのご利用をお勧めします。