$n$を$5$以上の自然数とする。
$a_{1}+a_{2}+a_{3}<a_{4}+a_{5}\leq n$ を満たす自然数の組$(a_{1},a_{2},a_{3},a_{4},a_{5})$は何通りあるか。
答えは$\frac{\fbox{あ}n^5-\fbox{い}n^4+\fbox{う}n^3-\fbox{え}n^2+\fbox{お}n}{\fbox{か}}$と表せます。
この分数式が既約な形になるように、それぞれの文字に当てはまる整数を、半角数字で、五十音順に改行して答えてください。
(例)$\fbox{あ}=2,\fbox{い}=10,\fbox{う}=4$と回答する場合
2
10
4
この問題を解いた人はこんな問題も解いています