不等式を満たす自然数の組

lyala 自動ジャッジ 難易度: 数学 > 高校数学
2022年9月20日9:50 正解数: 4 / 解答数: 4 (正答率: 100%) ギブアップ数: 1

全 4 件

回答日時 問題 解答者 結果
2022年10月21日17:31 不等式を満たす自然数の組 fff
正解
2022年10月16日15:23 不等式を満たす自然数の組 ゲスト
正解
2022年9月22日10:48 不等式を満たす自然数の組 tima_C
正解
2022年9月20日15:38 不等式を満たす自然数の組 naoperc
正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

何進法の世界?

Gauss 自動ジャッジ 難易度:
2年前

5

問題文

$$\quad$$鋭角三角形の三辺の長さが $22_{(N)},$ $124_{(N)},$ $130_{(N)}$ である。
自然数 $N$ の満たす条件を求めよ。
$$\quad$$

解答形式

半角で入力してください。
$N$ の値が一意に定まる場合は、その値を入力してください。
$N$ の値に範囲がある場合は、最小値~最大値という形式で入力してください。ただし、最大値が存在しない場合は、最小値~という形式で入力し、複数の区間が存在する場合は最小値が小さいものから改行区切りで入力してください。
例) 解答が $N=17, 22≦N≦30, 330≦N$ の場合
17
22~30
330~

素数と極限

Gauss 自動ジャッジ 難易度:
2年前

7

問題文

小さい方から $n$ 番目の素数を $p_{n}$ とおく。
次の極限を調べよ。
$$
\lim_{n\to \infty}\frac{2}{1}\cdot\frac{3}{2}\cdot\frac{5}{4}\cdot\frac{7}{6}\cdot\frac{11}{10}\cdot\frac{13}{12}\cdots\frac{p_{n}}{p_{n}-1}
$$

解答形式

発散する場合

以下のように入力してください。
正の無限大に発散する場合 : ∞
負の無限大に発散する場合 : -∞
振動する場合 : 振動

収束する場合

半角英数字で入力してください。
分数は規約分数で1つにまとめて{分子}/{分母}の形で入力してください。
累乗は{底}^{指数}の形で入力してください。根号は累乗の形に直してください。
対数は自然対数に揃えてlog{真数}の形で入力してください。
自然対数の底はe,円周率はπと表記してください。
例1) $\sqrt{2} e^{3}$ の場合 : {2}^{{1}/{2}}{e}^{3}
例2) $\log_{2}3$ の場合 : {log{3}}/{log{2}}

4次方程式の整数解

footballOMF 自動ジャッジ 難易度:
22月前

12

問題文

$x$の4次方程式
$$
x^{4}-5x^{3}-2(n+7)x^{2}+5nx+n^{2}=0
$$が異なる4つの整数解をもつとき、整数$n$の値を求めよ。

解答形式

半角数学で解答してください。
また、$n$の値が2つ以上ある場合
改行して小さい順に並べてください。

(例) $n= -5 , -4$ のとき
-5
-4


【補助線主体の図形問題 #014】
 今回は面積関係を問う問題にしてみました。補助線が活躍するのはいつも通り。暗算での処理も可能です。思い思いの解法をお楽しみください。

解答形式

${
\def\cm{\thinspace \mathrm{cm}}
\def\mytri#1{\triangle \mathrm{#1}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm^2$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm^2$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm^2$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

ヒント内容の予告

  1. 全体方針
  2. ヒント1の続き
  3. その後の方針
  4. ヒント3の続き

直角三角形と8個の円

tb_lb 自動ジャッジ 難易度:
2年前

4

【補助線主体の図形問題 #006】
 投稿日である今日3月14日は、円周率$\pi$の近似値 $3.14$ になぞらえて「円周率の日」と定められています。ということで「円周率の日」記念に円多めの問題を用意しました。
 補助線が活躍するのはいつも通りです。ちょっとした知識があると暗算で処理可能ですが、そうでなくとも大した計算量ではありません。どうぞ円まみれのお時間を楽しんでいただければ幸いです。

解答形式

${
\def\cm{\thinspace \mathrm{cm}}
\def\mytri#1{\triangle \mathrm{#1}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm^2$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm^2$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm^2$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

ヒント内容の予告

  1. 全体の方針をぼんやりと
  2. ヒント1の内容をやや具体的に
  3. ヒント2の続き

6つの正方形

tb_lb 自動ジャッジ 難易度:
2年前

7

【補助線主体の図形問題 #004】
 今日の図形問題は正方形をたっぷりと並べてみました。座標幾何や複素数平面に落とし込みたい誘惑を断ち切って補助線解法を堪能していただけたら本望です。うまく引ければ余裕で暗算可能ですよ!

解答形式

${
\def\cm{\thinspace \mathrm{cm}}
\def\mytri#1{\triangle \mathrm{#1}}
\def\jsim{\mathrel{\unicode[sans-serif]{x223D}}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

ヒント内容の予告

  1. おおざっぱな方針
  2. ヒント1の続き
  3. ヒント2の続き
  4. ヒント1~3を具体的に

求面積問題23

Kinmokusei 自動ジャッジ 難易度:
2年前

7

問題文

半円の内部に正方形を2つ、図のように配置しました。赤い線分の長さ(=2つの正方形の一辺の差)が3であるとき、青で示した部分の面積と緑で示された部分の面積の差を求めてください。

解答形式

半角数字で解答してください。

ハノイの塔

KNKR_UT 自動ジャッジ 難易度:
2年前

2

問題文

3本の杭と中央に穴のあいた大きさの異なる$n$枚の円盤があります。いま、杭の1つにすべての円盤が小さいものが上にくるように積み重なっています(初期状態)。この状態から下記のルールを守りながら操作を行うとき、初期状態から到達し得る状態は何通りありますか。ただし初期状態も1通りと数え、また3本の杭は区別することとします。

例えば「左端の杭に大きさ1から$n$の全ての円盤が積み重なっている状態」を1つ、そこから操作を一回だけ行い、「左端に大きさ2から$n$の円盤、真ん中に大きさ1の円盤が積み重なっている状態」を1つ、のように状態の数をカウントします。また、「真ん中の杭に大きさ1から$n$の全ての円盤が積み重なっている状態」と、「右端の杭に大きさ1から$n$の全ての円盤が積み重なっている状態」のように杭が異なる場合もそれぞれ別の状態としてカウントします。

ルール
  • 円盤は一回に一枚ずつしか移動できない。
  • 小さな円盤の上に大きな円盤を乗せることはできない。

解答形式

半角英数字と下記の半角記号で答えてください。式中にスペースを含めないでください。

使える記号
  • 「+」加算
  • 「-」減算
  • 「*」乗算
  • 「/」除算(分数)
  • 「( )」かっこ
  • 「^」冪乗
  • 「!」階乗
2年前

5

【補助線主体の図形問題 #020】
 今週の図形問題は円がらみの求長問題を用意しました。いつも通り暗算解法も仕込んであります。初等幾何猛者の方はぜひ脳内で処理しきってみてください。猛者とまではいかないという方もじっくりと挑戦してもらえたら嬉しいです!

解答形式

${
\def\cm{\thinspace \mathrm{cm}}
\def\myang#1{\angle \mathrm{#1}}
\renewcommand\deg{{}^{\circ}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

ヒント内容の予告

  1. 全体方針をぼんやりと
  2. ヒント1の続き
  3. ヒント2をやや具体的に
  4. ヒント3の続き

円と3本の直径

tb_lb 自動ジャッジ 難易度:
2年前

10

【補助線主体の図形問題 #021】
 今回は久しぶりに面積関係の問題を用意してみました。複雑な計算は必要ありません。腕に覚えのある方はぜひ脳内だけでの処理に挑戦してみてください。

解答形式

${
\def\cm{\thinspace \mathrm{cm}}
\def\mytri#1{\triangle \mathrm{#1}}
\def\jpara{\mathrel{\unicode{x2AFD}}}
\def\paraeq{\mathrel{\style{transform:translateY(-0.4em)}{\scriptsize{/\!/}} \hspace{-0.7em}{\style{transform:translateY(0.1em)}{=}}}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm^2$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm^2$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm^2$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

ヒント内容の予告

  1. 全体の方針をぼんやりと
  2. ヒント1の続き
  3. ヒント2から導けること・その1
  4. ヒント2から導けること・その2

求値問題7

Kinmokusei 自動ジャッジ 難易度:
2年前

3

問題文

(2021.3.13 15:56 追記) 解答に誤りがあったため修正しました。

次の不等式を満たす最大の自然数$n$を求めてください。
$$
2^{n+1}-10\sum_{k=1}^n \lfloor \frac{2^{k-1}}{5} \rfloor \le 20210220
$$ただし、$\lfloor x\rfloor$は$x$を超えない最大の整数を表します。

解答形式

半角数字で解答してください。

求長問題20

Kinmokusei 自動ジャッジ 難易度:
2年前

2

問題文

半円と平行四辺形が図のように配置されています。赤い三角形の面積が3のとき、青い線分の長さを求めてください。

※平行四辺形の一辺と半円は接する。

解答形式

$$x=\fbox{ア}\sqrt{\fbox{イウ}-\fbox エ\sqrt{\fbox オ}}$$と表せるので、文字列 アイウエオ を解答してください。ただし、$\fbox ア~\fbox オ$には0以上9以下の整数が入ります。