内接球の半径

ryno 自動ジャッジ 難易度: 数学 > 高校数学
2022年10月15日8:45 正解数: 3 / 解答数: 4 (正答率: 75%) ギブアップ不可
四面体 内接球

問題文

3辺がそれぞれ3,√2,√10である不等辺三角形から成る等面四面体𝑋が存在する。三角形の面積を𝑝、𝑋に内接する球体の半径を𝑞とするとき、𝑞を𝑝を用いて表せ。

解答形式

𝑞=√a/b𝑝となります。
a+bを半角で答えてください


ヒント1

四面体に内接する球体の半径は次のように表す事ができる

3V=rS

V:体積
S:表面積
r:内接球の半径

〔証明〕
四面体ABCDについて3V=Srを示す
内接球の中心Iから各頂点に線分を引いて四面体を4つの小さな四面体ABCI,BCDI,CDAI,DABI,に分割して体積を求める。
三角形ABCの面積を|ABC|と表し、四面体ABCIの体積を|ABCI|などと表すと、
V=|ABCI|+|BCDI|+|CDAI|+|DABI|
V=r/3|ABC|+r/3|BCD|+r/3|CDA|+r/3|DAB|
V=rS/3
3V=rS

ヒント2

等面四面体は直方体に内接する


スポンサーリンク

解答提出

この問題は自動ジャッジの問題です。 解答形式が指定されていればそれにしたがって解答してください。

Discordでログイン Sign in with Google パスワードでログイン

ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。

または


おすすめ問題

この問題を解いた人はこんな問題も解いています


次の式を因数分解しなさい

$2(x-y)^2-xy(x^2+2xy+y^2-3)+(2x+2y)^2-(x+y)^2+xy[(x+y)(x-y)+2y(x+y)+5]$

解答形式

半角で解答のみを記入すること

降べきの順で記入すこと

同じ項の中にx,yが同時にある場合、xを先に記入すること

指数の表記は ^n の形で解答すること

括弧の外にある係数は左側に記入すること

括弧内の項は、文字 数 の順に記入すること

数列と4次方程式

noname 自動ジャッジ 難易度:
7月前

2

問題

一般項${a_n}=3(\frac{\sqrt{3}}{2})^{n-1}+\frac{(\sqrt{5}-1)^{n-1}}{2}+\frac{(\sqrt{5}+1)^{n-1}}{3}+(\sqrt{2}-1)^{n-1}$を与える数列${a_n}$の漸化式を考えることにより$x$についての方程式$$x^4+(1-\sqrt{2}-\frac{\sqrt{3}}{2}-2\sqrt{5})x^3+(4-\frac{\sqrt{3}}{2}-2\sqrt{5}+\frac{\sqrt{6}}{2}+2\sqrt{10}+\sqrt{15})x^2+(4-4\sqrt{2}-2\sqrt{3}+\sqrt{15}-\sqrt{30})x-2\sqrt{3}+2\sqrt{6}=0$$を解いてください。

解答形式

それぞれの解について、実数の場合はその整数部分、複素数の場合は実数部分の整数部分を求め、それらを全て足し合わせた数を半角で1行目に入力してください。

求長問題14

Kinmokusei 自動ジャッジ 難易度:
3年前

2

問題文

半径21の扇形に図のように線を引きました。青い三角形の面積が213のとき、赤い線分の長さを求めてください。

※高校数学カテゴリに入れてますが、中学数学範囲での綺麗な解法をTwitterにて頂きました。是非考えてみてください。

解答形式

解答は既約分数$\frac{\fbox{アイウ}}{\fbox{エ}}$となります。文字列「アイウエ」を解答してください。
ただし、$\fbox ア ~ \fbox エ$には$0$以上$9$以下の整数が入ります。

平面図形①

pontikisamurai 自動ジャッジ 難易度:
2年前

2

問題文

四角形ABCD、四角形GHCFはそれぞれ正方形で、1辺の長さはそれぞれ10cm、4cmです。また、DCとFC、BCとHCはぴったり重なっているとする。また、四角形IBKJは長方形で、IJは2cm、IBは4cmとし、ABとIB、BCとBKはぴったり重なっているとする。更に、AJとDGの延長とBCとの交点をEとし、Gを通りΔADEの面積を2等分する線とADとの交点をP、Jを通りΔADEの面積2等分する線と、ADとの交点をRとする。さらにPGの延長とBCとの交点をQ、RJとABとの交点をSとする。PGとRJの交点をOとする。四角形OJEQの面積を求めよ。

解答方法

分数は/で表してください。
例)2分の9は 9/2 で表す。

4重根号

tsx 自動ジャッジ 難易度:
23月前

7

問題文

以下の多重根号を簡略化せよ。

2022/12/09 訂正:

難易度やnaoperc様よりご指摘いただいた根号の指数の誤りなど複数箇所を訂正しました.

2023/02/11 訂正:

問題文, 解答形式の文章を他の問題と統一しました. 解答に影響はありません.

2023/03/21 訂正:

解答形式を変更しました. 解答に影響はありません.

解答形式

スペースを含めず, ASCII文字のみを用いて $\mathrm{\LaTeX}$ 形式で解答してください. $は必要ありません.

数の大小

PonPon 自動ジャッジ 難易度:
2年前

4

問題

以下の問に関して, $2.71<e<2.72$ , $3.14<π<3.15$ とする.

(1) $a≠0$ のとき $a+1$ , $e^a$ の大小を比較せよ.

(2) $α>0$ かつ $β>0$ かつ $α≠β$ のとき,
$\hspace{11pt} $ $α-β$ , $β(logα-logβ)$ の大小を比較せよ.

(3) $e^π$ , $π^e$ の大小を比較せよ.

(4) $e^{e^e},e^{e^π},e^{π^e},e^{π^π},π^{e^e},π^{e^π},π^{π^e},π^{π^π} $ の大小を比較せよ.
$\hspace{11pt} $ここで, $a^{b^c}$は $a^{(b^c)} $を表す.

解答形式

(1) ① $a+1$ ② $e^a$
(2) ① $α-β$ $\:$② $β(logα-logβ)$
(3) ① $e^π$ ② $π^e$
(4) ①$e^{e^e}$②$e^{e^π}$③$e^{π^e}$④$e^{π^π}$⑤$π^{e^e}$⑥$π^{e^π}$⑦$π^{π^e}$⑧$π^{π^π} $
として問ごとに改行し,小さい順に左から半角数字を用いて並べよ.
(例)12345678

余擺々々...線

tsx 自動ジャッジ 難易度:
21月前

2

問題文

定点 $\mathrm{P_0}$, $\mathrm{P}$ があり, $\mathrm{P_0 P}=1$ を満たしている.
線分 $\mathrm{P_0 P}$ の中点を $\mathrm{P_1}$,
線分 $\mathrm{P_1 P}$ の中点を $\mathrm{P_2}$,
線分 $\mathrm{P_2 P}$ の中点を $\mathrm{P_3}$, ... というように, $n\in\mathbb{N}$ に対し, 点 $\mathrm{P_\mathit{n}}$ を 線分 $\mathrm{P_{\mathit{n}-1}\mathrm{P}}$ の中点として, 線分 $\mathrm{P_0 P}$ 上に無数の点をとる. いま, このようにしてできた全ての点が同時に出発して, 点 $\mathrm{P_\mathit{n}}$ が点 $\mathrm{P_{\mathit{n}-1}}$ を中心として円を描くように動くとき, $\displaystyle\lim_{n\to\infty}\mathrm{P_\mathit{n}}$ が描く曲線の長さを求めよ.
ただし, 線分 $\mathrm{P_0 P_1}$ が線分 $\mathrm{P_0 P}$ に対してなす角,
線分 $\mathrm{P_1 P_2}$ が線分 $\mathrm{P_0 P_1}$ に対してなす角,
線分 $\mathrm{P_2 P_3}$ が線分 $\mathrm{P_1 P_2}$ に対してなす角, ...
線分 $\mathrm{P_\mathit{n} P_{\mathit{n}+1}}$ が線分 $\mathrm{P_{\mathit{n}-1} P_\mathit{n}}$ に対してなす角の変化はすべて等しく, 一定の割合であるとする.

2023/02/22 訂正:

tima_C様のご指摘を受け、難易度を変更しました.

2023/03/21 訂正:

解答形式を変更しました. 解答に影響はありません.

解答形式

スペースを含めず, ASCII文字のみを用いて $\mathrm{\LaTeX}$ 形式で解答してください. $は必要ありません.

ただし, 文字や根号などの係数が分数の場合は
$$
\frac{3}{2}x\rightarrow\frac{3x}{2}
$$
のように, 文字を分子にまとめてください.

雑学的数学問題集 1

LUBE 自動ジャッジ 難易度:
15月前

4

おことわり

以下の問題において,1日は正確に24時間,1時間は正確に60分,1分は正確に60秒であるとする。

問題

1太陽年(すなわち地球の公転周期)を正確に31556925秒とする。1年を365日とした暦(以下「暦」という)と太陽年を合わせるため,ある$X$年の暦において,次の条件に当てはまったときにうるう年を施す。

うるう年の決め方
  1. $X$が4で割り切れる年を366日とする。これをうるう年という。

  2. $X$が100で割り切れる年には施されるはずだった,うるう年をキャンセルする。

  3. $X$が400で割り切れる年はうるう年とする。

このうるう年の仕組みにより,太陽年と大きくずれることなく暦を運用できる。

ある年$Y$年において,うるう年を勘案しても暦が太陽年と1日以上のずれを起こすことが分かった。このとき,$Y$の最小値を求めよ。ただし$Y$は自然数とする。

解答形式

解答は自動で判定されます。半角数字のみで答えてください。単位,カンマ区切り,0埋め,有効数字などは必要ありません。

◎ よい例
  • 2023
  • 1
  • 1000000000000
▲ わるい例
  • 2023年(単位)
  • 2,023(カンマ区切り)
  • 0002(0埋め)
  • 1.0×10^5(有効数字)
3年前

4

問題文

初めに$N$枚のコインを持っています。下記のルールを守ってゲームを$m$回するとき、最後に持っているコインの枚数としてありえる枚数は$K$通りあります。このとき場合の数$K$を最大化するための$m$を答えてください。

ルール
  • コインゲーム筐体は$n$台あり一列に並んでいます。
  • 左から$i$番目の筐体でゲームをするにはコインを$i$枚消費します。
  • 1つの筐体につき一度しかゲームをできません。
  • ゲームに成功するとその筐体で消費した枚数の倍の枚数のコインが手に入ります。
  • ゲームに失敗するとコインは一枚も手に入りません。
  • 筐体は好きな順番でゲームをすることができます。
制約
  • $1 \le m \le n$
  • $2 \le n $
  • $ n^2 < N $

解答形式

半角英数と下記の半角記号で答えてください。

半角記号

()+-/^!

x^(n-1)/(x+y)!

ハノイの塔

KNKR_UT 自動ジャッジ 難易度:
3年前

2

問題文

3本の杭と中央に穴のあいた大きさの異なる$n$枚の円盤があります。いま、杭の1つにすべての円盤が小さいものが上にくるように積み重なっています(初期状態)。この状態から下記のルールを守りながら操作を行うとき、初期状態から到達し得る状態は何通りありますか。ただし初期状態も1通りと数え、また3本の杭は区別することとします。

例えば「左端の杭に大きさ1から$n$の全ての円盤が積み重なっている状態」を1つ、そこから操作を一回だけ行い、「左端に大きさ2から$n$の円盤、真ん中に大きさ1の円盤が積み重なっている状態」を1つ、のように状態の数をカウントします。また、「真ん中の杭に大きさ1から$n$の全ての円盤が積み重なっている状態」と、「右端の杭に大きさ1から$n$の全ての円盤が積み重なっている状態」のように杭が異なる場合もそれぞれ別の状態としてカウントします。

ルール
  • 円盤は一回に一枚ずつしか移動できない。
  • 小さな円盤の上に大きな円盤を乗せることはできない。

解答形式

半角英数字と下記の半角記号で答えてください。式中にスペースを含めないでください。

使える記号
  • 「+」加算
  • 「-」減算
  • 「*」乗算
  • 「/」除算(分数)
  • 「( )」かっこ
  • 「^」冪乗
  • 「!」階乗

何進法の世界?【改訂版】

Gauss 自動ジャッジ 難易度:
3年前

3

問題文

$\quad$
鈍角三角形の三辺の長さが $40_{(N)},$ $399_{(N)},$ $401_{(N)}$ である.
自然数 $N$ の満たす条件を求めよ.
$$\quad$$

解答形式

半角で入力してください.
$N$ の値が一意に定まる場合は, その値を入力してください.
$N$ の値に範囲がある場合は, 最小値~最大値 という形式で入力してください.
ただし, 最大値が存在しない場合は, 最小値~ という形式で入力し, 複数の区間が存在する場合は最小値の小さいものから改行区切りで入力してください.
$\mathrm{ex})$ 解答が $N=17,~22≦N≦30,~330≦N$ の場合
  17
  22~30
  330~


【補助線主体の図形問題 #014】
 今回は面積関係を問う問題にしてみました。補助線が活躍するのはいつも通り。暗算での処理も可能です。思い思いの解法をお楽しみください。

解答形式

${
\def\cm{\thinspace \mathrm{cm}}
\def\mytri#1{\triangle \mathrm{#1}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm^2$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm^2$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm^2$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

ヒント内容の予告

  1. 全体方針
  2. ヒント1の続き
  3. その後の方針
  4. ヒント3の続き