ある座標平面がある。 (6、2)(6、0)(8、0)(8、18)(0、18)(0、2)(0、0)をそれぞれ 点A B C D E F G とする。この時、四角形ABGFと六角形DCBAFEの面積をそれぞれ2等分する直線Lを引くことを考える。 直線Lのy切片の絶対値を求めよ。
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
高さが100cmで底面積が600cm²の直方体の形をした水槽がある。この水槽は通常の水槽とは異なり、水槽の底面を上下移動させることができる。(底面が移動するとそれに伴って水も移動するため、水面も移動する。) まず、底面を1番下にした状態で毎分500cm³で40分間、水を入れた。 次に底面を上にXcm移動させた。 そして底面が上に移動した状態で毎分600cm³で60分間、水を入れた。 そして底面を上にXcm移動させると、4000 cm³ だけ水が溢れ出た。
この時、Xの値を求めなさい。ただし分数になる場合は以下のように答えなさい。
(例 1/2の場合は12 54/73の場合は5473 22/23の場合は2223 と答える )
A以上B以下の整数に出現する1の個数を、A●Bと表すとする。 例えば6、7、8、9、10、11には、3つの1が出現しているため、6●11=3 となる。
(15●30)●(220●X)=12 のとき、考えられる整数Xとして最も大きいものを答えなさい。
4×4の16マスがある。このマス目を赤、青、黄、緑で塗ることを考える。
A:縦と横のどの辺をとっても赤、青、黄、緑が一回ずつ出現する。 B:以下のように4つの部屋に分割したときにどの部屋をとっても赤、青、黄、緑が1回ずつ出現する。 □□|□□ □□|□□ __|__ □□|□□ □□|□□
AとBを両方満たす塗り方は何通りありますか? (例:30通りだったら、30と答えなさい)
【補助線主体の図形問題 #007】 今回は図形問題の王道から円がらみの求角問題を用意しました。手慣れている方なら脳内で処理できるくらいの計算量です。どうぞ円と角度の世界を堪能してください。
${ \renewcommand\deg{{}^{\circ}} \def\myang#1{\angle \mathrm{#1}} \def\myarc#1#2{\stackrel{\style{transform:matrix(#1,0,0,1.5,0,2)}{\frown}}{\mathrm{#2}}} }$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。角度は弧度法ではなく度数法で表すものとします。 (例) $12\deg$ → $\color{blue}{12.00}$ $\frac{360}{7}^{\circ}$ → $\color{blue}{51.43}$ 入力を一意に定めるための処置です。 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。
【補助線主体の図形問題 #087】 今週の図形問題は面積関係をテーマにしてみました。中点だらけということもあり、複雑な計算は不要です。自信のある方はぜひ暗算で処理してみてください。
${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。 (例) $12\cm^2$ → $\color{blue}{12.00}$ $10\sqrt{2}\cm^2$ → $\color{blue}{14.14}$ $\dfrac{1+\sqrt{5}}{2} \cm^2$ → $\color{blue}{1.62}$ 入力を一意に定めるための処置です。 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。
【補助線主体の図形問題 #092】 今週の図形問題です。解く人によって難易度の感じ方が大きく変わりそうな問題となりました。暗算で処理するのは厳しいでしょう。紙&ペンをお手元にご用意の上お楽しみください。
${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。 (例) $12\cm$ → $\color{blue}{12.00}$ $10\sqrt{2}\cm$ → $\color{blue}{14.14}$ $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$ 入力を一意に定めるための処置です。 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。
直角二等辺三角形と、その頂角を通る円が図のように配置されています。青で示した線分の長さを求めてください。
半角数字で解答してください。
【補助線主体の図形問題 #006】 投稿日である今日3月14日は、円周率$\pi$の近似値 $3.14$ になぞらえて「円周率の日」と定められています。ということで「円周率の日」記念に円多めの問題を用意しました。 補助線が活躍するのはいつも通りです。ちょっとした知識があると暗算で処理可能ですが、そうでなくとも大した計算量ではありません。どうぞ円まみれのお時間を楽しんでいただければ幸いです。
${ \def\cm{\thinspace \mathrm{cm}} \def\mytri#1{\triangle \mathrm{#1}} }$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。 (例) $12\cm^2$ → $\color{blue}{12.00}$ $10\sqrt{2}\cm^2$ → $\color{blue}{14.14}$ $\dfrac{1+\sqrt{5}}{2} \cm^2$ → $\color{blue}{1.62}$ 入力を一意に定めるための処置です。 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。
【補助線主体の図形問題 #017】 今回は方針により計算量が変化する問題を用意しました。とはいえ暗算で解くには幾分厳しいです。簡単な計算用紙&筆記具をお手元にご用意の上で挑戦してみてください。
${ \def\cm{\thinspace \mathrm{cm}} \def\mytri#1{\triangle \mathrm{#1}} }$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。 (例) $12\cm$ → $\color{blue}{12.00}$ $10\sqrt{2}\cm$ → $\color{blue}{14.14}$ $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$ 入力を一意に定めるための処置です。 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。
$f(x)=x^2-4x+6$とする。$f(f(f(f(f(p+2)))))$が素数となるような素数$p$を全て求めよ。
ない場合は「0」、ある場合は小さい順に半角英数字で入力してください。
三角形$ABC$の内部に点$P$があり,$\angle ABP=42^\circ$,$\angle CBP=42^\circ$,$\angle ACP=6^\circ$,$\angle BCP=12^\circ$がそれぞれ成り立っている.このとき,$\angle BAP$の大きさを度数法で表すと,$x^\circ$となる.
$x$に当てはまる数を求めよ.
解答のみを,半角数字で答えてください.
半円3つが図のように配置されています。∠Xと∠Yの差を求めてください。 ※同じ色で示した線分は長さが等しいです。
0~360までの整数を半角数字で解答してください。 「度」や「°」などの単位を付けないでください。 例: 30° → 30